Молекула рнк состоит из цепочек. Рнк. Строение и ее разнообразие. Мономерами молекул нуклеиновых кислот являются

Различные виды ДНК и РНК - нуклеиновых кислот - это один из объектов изучения молекулярной биологии. Одним из наиболее многообещающих и быстро развивающихся направлений в этой науке в последние годы стало исследование РНК.

Кратко о строении РНК

Итак, РНК, рибонуклеиновая кислота, - это биополимер, молекула которого представляет собой цепочку, образованную четырьмя видами нуклеотидов. Каждый нуклеотид, в свою очередь, состоит из азотистого основания (аденина А, гуанина Г, урацила У либо цитозина Ц) в соединении с сахаром рибозой и остатком фосфорной кислоты. Фосфатные остатки, соединяясь с рибозами соседних нуклеотидов, «сшивают» составные блоки РНК в макромолекулу - полинуклеотид. Так образуется первичная структура РНК.

Вторичная структура - образование двойной цепочки - образуется на некоторых участках молекулы в соответствии с принципом комплементарности азотистых оснований: аденин образует пару с урацилом посредством двойной, а гуанин с цитозином - тройной водородной связи.

В рабочей форме молекула РНК образует также третичную структуру - особое пространственное строение, конформацию.

Синтез РНК

Все виды РНК синтезируются при помощи фермента РНК-полимеразы. Она может быть ДНК- и РНК-зависимой, то есть катализировать синтез как на ДНК, так и на РНК-матрице.

Синтез основан на комплементарности оснований и антипараллельности направления чтения генетического кода и протекает в несколько этапов.

Сначала происходит узнавание и связывание РНК-полимеразы с особой последовательностью нуклеотидов на ДНК - промотором, после чего двойная спираль ДНК раскручивается на небольшом участке и начинается сборка молекулы РНК над одной из цепочек, называемой матричной (другая цепочка ДНК называется кодирующей - именно ее копией является синтезируемая РНК). Асимметричность промотора определяет, какая из цепочек ДНК будет служить матрицей, и тем самым позволяет РНК-полимеразе инициировать синтез в правильном направлении.

Следующий этап называется элонгацией. Транскрипционный комплекс, включающий РНК-полимеразу и расплетенный участок с гибридом ДНК-РНК, начинает движение. По мере этого перемещения наращиваемая цепочка РНК постепенно отделяется, а двойная спираль ДНК расплетается перед комплексом и восстанавливается за ним.

Завершающий этап синтеза наступает, когда РНК-полимераза достигает особого участка матрицы, называемого терминатором. Терминация (окончание) процесса может достигаться различными способами.

Основные виды РНК и их функции в клетке

Они следующие:

  • Матричная или информационная (мРНК). Посредством ее осуществляется транскрипция - перенос генетической информации с ДНК.
  • Рибосомная (рРНК), обеспечивающая процесс трансляции - синтез белка на матрице мРНК.
  • Транспортная (тРНК). Производит узнавание и транспортировку аминокислоты на рибосому, где происходит синтез белка, а также принимает участие в трансляции.
  • Малые РНК - обширный класс молекул небольшой длины, осуществляющих разнообразные функции в ходе процессов транскрипции, созревания РНК, трансляции.
  • РНК-геномы - кодирующие последовательности, которые содержат генетическую информацию у некоторых вирусов и вироидов.

В 1980-х годах была открыта каталитическая активность РНК. Молекулы, обладающие этим свойством, получили название рибозимов. Естественных рибозимов пока известно не так много, каталитическая способность их ниже, чем у белков, однако в клетке они выполняют исключительно важные функции. В настоящее время ведутся успешные работы по синтезу рибозимов, имеющие в том числе и прикладное значение.

Остановимся подробнее на различных видах молекул РНК.

Матричная (информационная) РНК

Эта молекула синтезируется над расплетенным участком ДНК, копируя таким образом ген, кодирующий тот или иной белок.

РНК эукариотических клеток, прежде чем стать, в свою очередь, матрицей для синтеза белка, должны созреть, то есть пройти через комплекс различных модификаций - процессинг.

Прежде всего, еще на стадии транскрипции, молекула подвергается кэпированию: к ее концу присоединяется особая структура из одного или нескольких модифицированных нуклеотидов - кэп. Он играет важную роль во многих последующих процессах и повышает стабильность мРНК. К другому концу первичного транскрипта присоединяется так называемый поли(А)хвост - последовательность адениновых нуклеотидов.

После этого пре-мРНК подвергается сплайсингу. Это удаление из молекулы некодирующих участков - интронов, которых много в ДНК эукариот. Далее происходит процедура редактирования мРНК, при которой химически модифицируется ее состав, а также метилирование, после чего зрелая мРНК покидает клеточное ядро.

Рибосомная РНК

Основу рибосомы - комплекса, обеспечивающего белковый синтез, составляют две длинные рРНК, которые образуют субчастицы рибосомы. Синтезируются они совместно в виде одной пре-рРНК, которая затем в ходе процессинга разделяется. В большую субчастицу входит также низкомолекулярная рРНК, синтезируемая с отдельного гена. Рибосомные РНК обладают плотно упакованной третичной структурой, которая служит каркасом для белков, присутствующих в рибосоме и выполняющих вспомогательные функции.

В нерабочей фазе субъединицы рибосомы разделены; при инициации трансляционного процесса рРНК малой субчастицы соединяется с матричной РНК, после чего происходит полное объединение элементов рибосомы. При взаимодействии РНК малой субчастицы с мРНК последняя как бы протягивается через рибосому (что равнозначно движению рибосомы по мРНК). Рибосомная РНК большой субчастицы является рибозимом, то есть обладает ферментными свойствами. Она катализирует образование пептидных связей между аминокислотами в ходе синтеза белка.

Следует отметить, что наибольшая часть всей РНК в клетке приходится на долю рибосомной - 70-80 %. ДНК обладает большим количеством генов, кодирующих рРНК, что обеспечивает весьма интенсивную ее транскрипцию.

Транспортная РНК

Эта молекула распознается определенной аминокислотой при помощи особого фермента и, соединяясь с ней, производит транспортировку аминокислоты на рибосому, где служит посредником в процессе трансляции - синтеза белка. Перенос осуществляется путем диффузии в цитоплазме клетки.

Вновь синтезированные молекулы тРНК, так же как и другие виды РНК, подвергаются процессингу. Зрелая тРНК в активной форме имеет конформацию, напоминающую клеверный лист. На «черешке» листа - акцепторном участке - расположена последовательность ЦЦА с гидроксильной группой, которая связывается с аминокислотой. На противоположном конце «листа» находится антикодоновая петля, которая соединяется с комплементарным кодоном на мРНК. D-петля служит для связывания транспортной РНК с ферментом при взаимодействии с аминокислотой, а Т-петля - для связывания с большой субчастицей рибосомы.

Малые РНК

Эти виды РНК играют важную роль в клеточных процессах и сейчас активно изучаются.

Так, например, малые ядерные РНК в клетках эукариот участвуют в сплайсинге мРНК и, возможно, обладают каталитическими свойствами наряду с белками сплайсосом. Малые ядрышковые РНК участвуют в процессинге рибосомной и транспортной РНК.

Малые интерферирующие и микроРНК являются важнейшими элементами системы регуляции экспрессии генов, необходимой клетке для контроля собственной структуры и жизнедеятельности. Эта система - важная часть иммунного антивирусного ответа клетки.

Существует также класс малых РНК, функционирующих в комплексе с белками Piwi. Эти комплексы играют огромную роль в развитии клеток зародышевой линии, в сперматогенезе и в подавлении мобильных генетических элементов.

РНК-геном

Молекула РНК может использоваться в качестве генома большинством вирусов. Вирусные геномы бывают различными - одно- и двухцепочечными, кольцевыми или линейными. Также РНК-геномы вирусов часто бывают сегментированы и в целом короче, чем ДНК-содержащие геномы.

Существует семейство вирусов, генетическая информация которых, закодированная в РНК, после инфицирования клетки путем обратной транскрипции переписывается на ДНК, которая затем внедряется в геном клетки-жертвы. Это так называемые ретровирусы. К ним, в частности, относится вирус иммунодефицита человека.

Значение исследования РНК в современной науке

Если прежде преобладало мнение о второстепенной роли РНК, то ныне ясно, что она - необходимый и важнейший элемент внутриклеточной жизнедеятельности. Множество процессов первостепенной значимости не обходятся без активного участия РНК. Механизмы таких процессов долгое время оставались неизвестными, но благодаря исследованию различных видов РНК и их функций постепенно проясняются многие детали.

Не исключено, что РНК сыграла решающую роль в возникновении и становлении жизни на заре истории Земли. Результаты недавних исследований говорят в пользу этой гипотезы, свидетельствуя о необычайной древности многих механизмов функционирования клетки с участием тех или иных видов РНК. Например, недавно открытые рибопереключатели в составе мРНК (система безбелковой регуляции активности генов на стадии транскрипции), по мнению многих исследователей, являются отголосками эпохи, когда примитивная жизнь строилась на основе РНК, без участия ДНК и белков. Также весьма древним компонентом системы регуляции считаются микроРНК. Особенности структуры каталитически активной рРНК свидетельствуют о ее постепенной эволюции путем присоединения новых фрагментов к древней проторибосоме.

Тщательное изучение того, какие виды РНК и каким образом заняты в тех или иных процессах, исключительно важно также для теоретических и прикладных областей медицины.

  • 8. Строение фосфолипидов. Роль фосфолипидов в метаболизме.
  • 9. Строение и функции эйкозаноидов.
  • 10. Строение и функции холестерина.
  • 13. Биологическая роль макро- и микроэлементов.
  • 15. Роль фосфопиридоксаля в метаболизме
  • 17.Биохимическая функция витамина в12.
  • 18.Биологическая роль пантотеновой кислоты(в5)
  • 19.Биологическая роль рибофлавина(в2)
  • 20.Биологическая роль никотинамида.
  • 21. Биохимические функции тиаминпирофосфата.
  • 22. Биохимическая роль витамина с.
  • 23. Биологическая роль тетрагидрофолиевой кислоты (тгфк).
  • 24. Биологическая роль витамина d.
  • 25. Биологическая роль витамина а.
  • 26. Биологическая роль витамина е.
  • 27. Биологическая роль витамина к.
  • 29. Строение и классификация ферментов.
  • 30. Конкурентное и неконкурентное ингибирование ферментов.
  • 31. Особенности биологического катализа.
  • 32. Классификация гормонов. Роль гормонов в регуляции метаболизма.
  • 33. Гормоны надпочечников и их биохимические функции.
  • 34. Гормоны гипофиза и их биологическая роль.
  • 35. Биологическая роль половых гормонов.
  • 36. Биологическая роль гормонов коры надпочечников.
  • 37. Биологическая роль гормонов поджелудочной железы.
  • 38. Гормоны щитовидной железы. Их влияние на метаболизм.
  • 41. Биохимическая роль вторичных мессенджеров в метаболизме.
  • 42.Макроэргические соединения и их роль в метаболизме.
  • 43. Дыхательная цепь в митохондриях.
  • 44. Последовательность расположения и строение переносчиков электронов в дыхательной цепи.
  • 45. Процесс окислительного фосфорилирования, его биологическая роль.
  • 47. Механизмы образования свободных радикалов. Антиоксидантные системы в клетках.
  • 49. Биохимические механизмы окислительного декарбоксилирования пирувата.
  • 50. Механизм реакций и биологическая роль цикла Кребса.
  • 53. Глюконеогенез и его биологическая роль.
  • 54. Пентозофосфатный путь окисления углеводов.
  • 55. Особенности углеводного обмена у жвачных животных. Пути синтеза глюкозы у жвачных животных.
  • 62. Синтез триацилглицеридов и фосфолипидов.
  • 63. Кетоновые тела и их роль в метаболизме.
  • 64. Физико-химические свойства белков. Изоэлектрическое состояние и изоэлектрическая точка аминокислот и белков.
  • 65.Биохимические механизмы переваривания белков в жкт.
  • 66.Механизмы реакций трансаминирования и дезаминирования аминокислот.
  • 67.Декарбоксилирование аминокислот. Биологическая роль продуктов декарбоксилирования.
  • 69.Биологические механизмы окисления нуклеотидов
  • 70.Строение молекулы днк
  • 71. Биохимические механизмы синтеза дн
  • 72. Репликация и репарация.
  • 73. Строение рнк. Виды рнк. Их роль в метаболизме.
  • 74. Биохимические механизмы синтеза рнк.
  • 75. Биохимические механизмы синтеза белка.
  • 73. Строение рнк. Виды рнк. Их роль в метаболизме.

    Рибонуклеиновая кислота (РНК) – это однонитевой биополимер, в качестве мономеров которого выступают нуклеотиды.

    Матрицей для синтеза новых молекул РНК являются молекулы дезоксирибонуклеиновой кислоты (транскрипция РНК). Хотя в ряде случаев возможен и обратный процесс (образование новых ДНК на матрице РНК в ходе репликации некоторых вирусов). Также основой для биосинтеза РНК могут быть другие молекулы рибонуклеиновой кислоты (репликация РНК). В транскрипции РНК, происходящей в ядре клетки, участвует целый ряд ферментов, наиболее значимым из которых является РНК-полимераза.

    Структура РНК.

    Молекула имеет однонитевое строение. Полимер. В результате взаимодействия нуклеотидов друг с другом молекула РНК приобретает вторичную структуру, различной формы (спираль, глобула и т.д.). Мономером РНК является нуклеотид (молекула, в состав которой входит азотистое основание, остаток фосфорной кислоты и сахар (пептоза)). РНК напоминает по своему строению одну цепь ДНК. Нуклеотиды, входящие в состав РНК: гуанин, аденин, цитозин, урацил. Аденин и гуанин относятся к пуриновым основаниям, цитозин и урацил к пиримидиновым. В отличие от молекулы ДНК, в качестве углеводного компонента рибонуклеиновой кислоты выступает не дезоксирибоза, а рибоза. Вторым существенным отличием в химическом строении РНК от ДНК является отсутствие в молекуле рибонуклеиновой кислоты такого нуклеотида как тимин. В РНК он заменён на урацил.

    Функции РНК различаются в зависимости от вида рибонуклеиновый кислоты.

    1) Информационная РНК (и-РНК).

    Иногда данный биополимер называют матричной РНК (м-РНК). Данный вид РНК располагается как в ядре, так и в цитоплазме клетки. Основное назначение – перенос информации о строении белка от дезоксирибонуклеиновой кислоты к рибосомам, где и происходит сбор белковой молекулы. Относительно небольшая популяция молекул РНК, составляющая менее 1% от всех молекул.

    2) Рибосомная РНК (р-РНК).

    Самый распространенный вид РНК (около 90% от всех молекул данного вида в клетке). Р-РНК расположена в рибосомах и является матрицей для синтеза белковых молекул. Имеет наибольшие, по сравнению с другими видами РНК, размеры. Молекулярная масса может достигать 1,5 миллионов кДальтон и более.

    3) Транспортная РНК (т-РНК).

    Расположена, преимущественно, в цитоплазме клетки. Основное назначение- осуществление транспорта (переноса) аминокислот к месту синтеза белка (в рибосомы). Транспортная РНК составляет до 10% от всех молекул РНК, располагающихся в клетке. Имеет наименьше, по сравнению с другими РНК- молекулами, размеры (до 100 нуклеотидов).

    4) Минорные (малые) РНК.

    Это молекулы РНК, чаще всего с небольшой молекулярной массой, располагающиеся в различных участках клетки (мембране, цитоплазме, органеллах, ядре и т.д.). Их роль до конца не изучена. Доказано, что они могут помогать созреванию рибосомной РНК, участвуют в переносе белков через мембрану клетки, способствуют редупликации молекул ДНК и т.д.

    5) Рибозимы.

    Недавно выявленный вид РНК, принимающие активное участие в ферментативных процессах клетки в качестве фермента (катализатора).

    6) Вирусные РНК.

    Любой вирус может содержать только один вид нуклеиновой кислоты: либо ДНК либо РНК. Соответственно, вирусы, имеющие в своём составе молекулу РНК, получили название РНК-содержащие. При попадании в клетку вируса данного типа может происходить процесс обратной транскрипции (образование новых ДНК на базе РНК), и уже вновь образовавшаяся ДНК вируса встраивается в геном клетки и обеспечивает существование, а также размножение возбудителя. Вторым вариантом сценария является образование комплиментарной РНК на матрице поступившей вирусной РНК. В этом случае, образование новых вирусных белков, жизнедеятельность и размножение вируса происходит без участия дезоксирибонуклеиновой кислоты только на основании генетической информации, записанной на вирусной-РНК.

    Присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК содержат вместо дизоксирибозы рибозу. В цепочке РНК нуклеотиды соединяются ковалентными связями между рибозой одного нуклеотида и остатком фосфорной кислоты другого.

    В организме РНК находятся в виде комплексов с белками — рибонуклеопротеидов.

    Известны 2 типа молекул РНК:

    1) Двуцепочные РНК характерны для некоторых вирусов - служат для хранения и воспроизведения наследственной информации (выполняют функции хромосом).

    2) У большинства клеток - одноцепочные РНК - осуществляют перенос информации об аминокислотной последовательности в белках от хромосомы к рибосоме.

    Одноцепочечные РНК имеют пространственную организацию : за счет взаимодействия азотистых оснований друг с другом, а также с фосфатами и гидроксилами сахарофосфатного остова происходит сворачивание цепи в компактную структуру типа глобулы. Функция: перенос от хромосомы к рибосомам информацию о последовательности АК в белках, которые должны синтезироваться.

    Существует несколько типов одноцепочных РНК по выполняемой функции или месту нахождения в клетке:

    1. Рибосомная РНК (рРНК) составляет основную часть РНК цитоплазмы (80-90 %). Размеры 3000-5000 пар нуклеотидов. Вторичная структура в виде двухспиральных шпилек. р-РНК является структурным компонентом рибосом - органоиды клетки, где происходит синтез белков. Рибосомы локализованы в цитоплазме, ядрышке, митохондриях, хлоропластах. Состоят из двух субъединиц - большой и малой. Малая субчастица состоит из одной молекулы рРНК и 33 молекул белков, большая субъединица - 3 молекулы рРНК и 50 белков. Белки рибосом выполняют ферментативную и структурную функции.

    Функции р-РНК:

    1) структурный компонент рибосом - их целостность необходима для биосинтеза белков;

    2) обеспечивают правильность связывания рибосомы с м-РНК;

    3) обеспечивают правильность связывания рибосомы с т-РНК;

    2. Матричная (мРНК ) - 2-6 % от общего количества РНК.

    Состоит из участков:

    1) цистроны - определяют последовательность АК в кодируемых ими белках, имеют уникальную последовательность нуклеотидов;

    2) нетранслируемые области располагаются на концах молекулы, имеют общие закономерности нуклеотидного состава.

    Кэп - особая структура на 5′ конце м-РНК - это 7-метилгуанозинтрифосфат, образуется ферментативным путем в процессе транскрипции.


    Функции кэпа:

    1) предохраняет 5′ конец от расщепления экзонуклеазами,

    2) используется для специфического узнавания м-РНК в процессе трансляции.

    Прецистронный нетранслируемый участок - 3-15 нуклеотидов. Функция : обеспечение правильного взаимодействия 5′ конца м-РНК с рибосомой.

    Цистрон : содержит инициирующий и терминирующий кодоны - особые последовательности нуклеотидов, отвечающие за начало и окончание передачи информации с данного цистрона.

    Постцистронный нетранслируемый участок - находится на 3′ конце, содержит гексануклеотид (часто ААУААА) и цепочку из 20-250 адениловых нуклеотидов. Функция - поддержание внутриклеточной стабильности м-РНК.

    3. Транспортные РНК (тРНК ) - 15 % от общей РНК, состоят из 70-93 пар нуклеотидов. Функция: перенос аминокислоты к месту синтеза белка, «узнают» (по принципу комплиментарности) участок мРНК, соответствующий переносимой аминокислоте. Для каждой из 20 АК имеются специфические т-РНК (обычно более одной). Все т-РНК имеют сложную структуру, изображаемую в виде клеверного листа.

    Клеверный лист содержит 5 участков:

    1) 3′ конец - акцепторная ветвь (сюда присоединяется эфирной связью остаток АК),

    2) антикидоновая ветвь - располагается напротив акцепторного участка, состоит из трёх неспаренных (имеющих свободные связи) нуклеотидов (антикодон) и специфически спаривается (антипараллельно, комлиментарно) с кодоном м-РНК.

    Кодон - набор из 3 нуклеотидов (триплет) в м-РНК, определяющий место данной аминокислоты в синтезируемой полипептидной цепи. Это единица генетического кода, с помощью которого в молекулах ДНК и РНК «записана» вся генетическая информация.

    3) Т-ветвь (псевдоурединовая петля - содержит псевдоуредин) - участок, присоединяющийся к рибосоме.

    4) Д-ветвь (дегидроуреди6новая петля - содержит дегидроуредин) - участок, обеспечивающий взаимодействие с соответствующим аминокислоте ферментом аминоацил-тРНК-синтетазой.

    5) Дополнительная малая ветвь. Функции пока не изучены.

    6) Ядерные РНК (яРНК) - компонент ядра клеток. Низкополимерная, стабильная, роль которой пока неясна.

    Все виды РНК синтезируются в клеточном ядре на матрице ДНК под действием ферментов полимераз . При этом образуется последовательность рибонуклеотидов, комплементарная последовательности дезоксирибо-нуклеотидов в ДНК - это процесс транскрипции.

    По химическому строению РНК (рибонуклеиновая кислота) является нуклеиновой кислотой, во многом схожей с ДНК . Важными отличиями от ДНК является то, что РНК состоит из одной цепи, сама цепь более короткая, вместо тимина в РНК присутствует урацил, вместо дезоксирибозы - рибоза.

    По строению РНК является биополимером, мономерами которого являются нуклеотиды. Каждый нуклеотид состоит из остатка фосфорной кислоты, рибозы и азотистого основания.

    Обычными для РНК азотистыми основаниями являются аденин, гуанин, урацил и цитозин. Аденин и гуанин относятся к пуринам, а урацил и цитозин - к пиримидинам. Пуриновые основания состоят из двух колец, а пиримидиновые из одного. Кроме перечисленных азотистых оснований в РНК встречаются и другие (в основном различные модификации перечисленных), в том числе и характерный для ДНК тимин.

    Рибоза - это пентоза (углевод, включающий пять атомов углерода). В отличие от дезоксирибозы имеет дополнительную гидроксильную группу, что делает РНК более активной в химических реакциях по сравнению с ДНК. Также как и во всех нуклеиновых кислотах пентоза в РНК имеет циклическую форму.

    Нуклеотиды соединены в полинуклеотидную цепь ковалентными связями между остатками фосфорной кислоты и рибозой. Один остаток фосфорной кислоты связан с пятым атомом углерода рибозы, а другой (от соседнего нуклеотида) связан с третьим атомом углерода рибозы. Азотистые основания связаны с первым атом углерода рибозы и располагаются перпендикулярно фосфатно-пентозному остову.

    Ковалентно связанные нуклеотиды формируют первичную структуру молекулы РНК. Однако по своему вторичному и третичному строению РНК бывают весьма различными, что связано со множеством выполняемых ими функций и существованием различных типов РНК .

    Вторичная структура РНК формируется за счет водородных связей возникающих между азотистыми основаниями. Однако, в отличие от ДНК, у РНК эти связи возникают не между разными (двумя) цепями полинуклеотида, а за счет различных способов складывания (петли, узлы и др.) одной цепи. Таким образом, вторичная структура молекул РНК бывает куда разнообразнее, чем у ДНК (где это почти всегда двойная спираль).

    Строение многих молекул РНК также подразумевает третичную структуру, когда сворачиваются уже спаренные за счет водородных связей участки молекулы. Например, молекула транспортной РНК на уровне вторичной структуры сворачивается в форму, напоминающую клеверный лист. А на уровне третичной структуры сворачивается так, что становится похожа на букву Г.

    Рибосомальная РНК образует комплексы с белками (рибонуклеопротеиды).

    РНК,как и ДНК, представляет собой полинуклеотид. Структура нуклеотидов РНК с таковой ДНК, но имеются следующие отличия:

    • Вместо дезоксирибозы в состав нуклеотидов РНК входит пятиуглеродный сахар- рибоза;
    • Вместо азотистого основания тимина- урацил;
    • Молекула РНК обычно представлена одной цепочкой (у некоторых вирусов- двумя);

    В клетках существуют три типа РНК: информационная,транспортная и рибосомальная.

    Инфармационная РНК (и-РНК) представляет собой копию определённого участка ДНК и выполняет роль переносчика генетической информации от ДНК к месту синтеза белка (рибосомы) и непосредственно участвует в сборке его молекул.

    Транспортные РНК (т-РНК)переносят аминокислоты из цитоплазмы в рибосомы.

    Рибосомальная РНК (р-РНК) входит в состав рибосом. Считают, что р-РНК обеспечивает определённое пространственное взаиморасположение и-РНК и т-РНК.

    Роль РНК в процессе реализации наследственной информации.

    Наследственная информация, записанная с помощью генетического кода, хранится в молекулах ДНК и размножается для того, чтобы обеспечить вновь образуемые клетки необходимыми «инструкциями» для их нормального развития и функционирования. Вместе с тем непосредственного участия в жизнеобеспечении клеток ДНК не принимает. Роль посредника, функцией которого является перевод наследственной информации, сохраняемой в ДНК, в рабочую форму, играют рибонуклеиновые кислоты - РНК.

    В отличие от молекул ДНК рибонуклеиновые кислоты представлены одной полинуклеотидной цепью, которая состоит из четырех разновидностей нуклеотидов, содержащих сахар, рибозу, фосфат и одно из четырех азотистых оснований - аденин, гуанин, урацил или цитозин. РНК синтезируется на молекулах ДНК при помощи ферментов РНК-полимераз с соблюдением принципа комплементарности и антипараллельности, причем аденину ДНК в РНК комплементарен урацил. Все многообразие РНК, действующих в клетке, можно разделить на три основных вида: мРНК, тРНК, рРНК.

    По химической организации материала наследственности и изменчивости эукариотические и прокариотические клетки принципиально не отличаются друг от друга. Генетический материал у них представлен ДНК. Общим для них является и принцип записи генетической информации, а также генетический код. Одни и те же аминокислоты шифруются у про- и эукариот одинаковыми кодонами. Принципиально одинаковым образом у названных типов клеток осуществляется и использование наследственной информации, хранящейся в ДНК. Сначала она транскрибируется в нуклеотидную последовательность молекулы мРНК, а затем транслируется в аминокислотную последовательность пептида на рибосомах с участием тРНК. Однако некоторые особенности организации наследственного материала, отличающие эукариотические клетки от прокариотических, обусловливают различия в использовании их генетической информации.

    Наследственный материал прокариотической клетки содержится главным образом в единственной кольцевой молекуле ДНК. Она располагается непосредственно в цитоплазме клетки, где также находятся необходимые для экспрессии генов тРНК и ферменты, часть из которых заключена в рибосомах. Гены прокариот состоят целиком из кодирующих нуклеотидных последовательностей, реализующихся в ходе синтеза белков, тРНК или рРНК.

    Наследственный материал эукариот больше по объему, чем у прокариот. Он расположен в основном в особых ядерных структурах -хромосомах , которые отделены от цитоплазмы ядерной оболочкой. Необходимый для синтеза белков аппарат, состоящий из рибосом, тРНК, набора аминокислот и ферментов, находится в цитоплазме клетки.

    Значительные отличия имеются в молекулярной организации генов эукариотической клетки. В большинстве из них кодирующие последовательности экзоны прерываются интронными участками, которые не используются при синтезе т-РНК, р-РНК или пептидов. Количество таких участков варьирует в разных генах.. Эти участки удаляются из первично-транскрибируемой РНК, в связи с чем использование генетической информации в эукариотической клетке происходит несколько иначе. В прокариотической клетке, где наследственный материал и аппарат биосинтеза белка пространственно не разобщены, транскрипция и трансляция происходят почти одновременно. В эукариотической клетке эти два этапа не только пространственно отделены ядерной оболочкой, но и во времени их разделяют процессы созревания м-РНК, из которой должны быть удалены неинформативные последовательности.

    Кроме указанных различий на каждом этапе экспрессии генетической информации можно отметить некоторые особенности течения этих процессов у про- и эукариот.