Какие газы получают перегонкой жидкого воздуха. Фракционная перегонка. Ректификация. Получение дистиллированной воды

Так как все газы имеют несколько агрегатных состояний и могут быть сжижены, то воздух, состоящий из смеси газов, тоже может стать жидкостью. В основном жидкий воздух производят для выделения из него чистого кислорода, азота и аргона.

Немного истории

До 19 века ученые считали, что газ имеет лишь одно агрегатное состояние, но доводить воздух до жидкого состояния научились уже в начале прошлого века. Это делалось при помощи машины Линде, основными частями которой были компрессор (электродвигатель, снабженный насосом) и теплообменник, представленный в виде двух свернутых в спираль трубок, одна из которых проходила внутри другой. Третьим компонентом конструкции был термос, внутри него и собирался Детали машины покрывались теплоизоляционными материалами, чтобы предотвратить доступ к газу теплоты извне. Находящаяся вблизи горловины внутренняя трубка оканчивалась дросселем.

Работа газа

Технология получения сжиженного воздуха довольно проста. Сначала смесь газов очищают от пыли, частиц воды, а также от углекислого газа. Есть еще одна важная составляющая, без которой не получится произвести жидкий воздух, - давление. С помощью компрессора до 200-250 атмосфер, одновременно охлаждая его водой. Далее воздух идет через первый теплообменник, после чего делится на два потока, больший из которых идет в детандер. Этим термином называют поршневую машину, которая работает за счет расширения газа. Она преобразовывает потенциальную энергию в механическую, и газ охлаждается, потому что совершает работу.

Турбодетандер

Несмотря на кажущуюся простоту, применение детандера невозможно в промышленных масштабах. Полученный путем дросселирования через тонкую трубку газ оказывается слишком дорог, получение его недостаточно эффективно и энергозатратно, а следовательно неприемлемо для промышленности. В начале прошлого века стоял вопрос об упрощении выплавки чугуна, и для этого было выдвинуто предложение делать поддув из воздуха с высоким содержанием кислорода. Таким образом возник вопрос и о промышленной добыче последнего.

Поршневой детандер быстро забивается водяным льдом, поэтому воздух нужно предварительно осушить, что делает процесс сложнее и дороже. Решить проблему помогла разработка турбодетандера, использующего вместо поршня турбину. Позднее турбодетандеры нашли применение в процессе получения и других газов.

Применение

Сам жидкий воздух как таковой нигде не используется, это промежуточный продукт в получении чистых газов.

Принцип выделения составляющих основан на разнице в кипении составных частей смеси: кислород закипает при —183°, а азот при —196°. Температура жидкого воздуха ниже двухсот градусов, и нагревая его, можно производить разделение.

Когда жидкий воздух начинает медленно испаряться, первым улетучивается азот, а после того, как его основная часть уже испарилась, при температуре —183° закипает кислород. Дело в том, что пока азот остается в смеси, она не может продолжить нагреваться, даже если использовать дополнительный подогрев, но как только большая часть азота улетучится, смесь быстро достигнет температуры кипения следующей части смеси, то есть кислорода.

Очищение

Однако таким путем невозможно получить чистые кислород и азот за одну операцию. Воздух в жидком состоянии на первой стадии перегонки содержит около 78 % азота и 21 % кислорода, однако чем дальше идет процесс и чем меньше азота остается в жидкости, тем больше вместе с ним будет испаряться и кислорода. Когда концентрация азота в жидкости падает до 50 %, содержание кислорода в парах увеличивается до 20 %. Поэтому испаренные газы вновь конденсируют и подвергают перегонке во второй раз. Чем больше было перегонок, тем чище будут полученные продукты.

В промышленности

Это два противоположных процесса. При первом жидкость должна затратить тепло, а при втором - тепло будет выделяться. В случае если нет потери тепла, то теплота, выделяемая и потребляемая во время этих процессов, равна. Таким образом объем сконденсированного кислорода будет практически равен объему испаренного азота. Этот процесс называется ректификацией. Смесь двух газов, образованная вследствие испарения жидкого воздуха, снова пропускается через него, и некоторая часть кислорода переходит в конденсат, отдавая при этом тепло, за счет чего испаряется некоторая часть азота. Процесс повторяется множество раз.

Промышленное и кислорода происходит в так называемых ректификационных колоннах.

При контакте с жидким кислородом многие материалы становятся хрупкими. К тому же - очень мощный окислитель, поэтому, попав в него, органические вещества сгорают, выделяя много тепла. При пропитке жидким кислородом некоторые из этих веществ приобретают неконтролируемые взрывоопасные свойства. Такое поведение свойственно нефтепродуктам, к которым относится обычный асфальт.

КАК ПОЛУЧАЮТ ЖИДКИЙ КИСЛОРОД

Обычно промышленное получение кислорода основывается на фракционной перегонке воздуха.

"Фракционная дистилляция (или дробная перегонка) - разделение многокомпонентных жидких смесей на отличающиеся по составу части - фракции. Основана на различии в составах многокомпонентной жидкости и образующегося из неё пара. Осуществляется путём частичного испарения легколетучих компонентов исходной смеси и последующей их конденсации. Первые (низкотемпературные) фракции полученного конденсата обогащены низкокипящими компонентами, остаток жидкой смеси - высококипящими. Для улучшения разделения фракций применяют дефлегматор"

"Разделение воздуха является основным способом получения Кислорода в современной технике. Осуществить разделение воздуха в нормальном газообразном состоянии очень трудно, поэтому воздух прежде сжижают, а уже затем разделяют на составные части. Такой способ получения Кислорода называется разделением воздуха методом глубокого охлаждения. Сначала воздух сжимается компрессором, затем, после прохождения теплообменников, расширяется в машине-детандере или дроссельном вентиле, в результате чего охлаждается до температуры 93 К (-180°С) и превращается в жидкий воздух. Дальнейшее разделение жидкого воздуха, состоящего в основном из жидкого азота и жидкого Кислород, основано на различии температуры кипения его компонентов [Ткип О2 90,18 К (-182,9°С), tкип N2 77,36 К (-195,8°С)]. При постепенном испарении жидкого воздуха сначала выпаривается преимущественно азот, а остающаяся жидкость все более обогащается Кислородом. Повторяя подобный процесс многократно на ректификационных тарелках воздухоразделительных колонн, получают жидкий Кислород нужной чистоты (концентрации). В СССР выпускают мелкие (на несколько литров) и самые крупные в мире кислородные воздухоразделительные установки (на 35000 м3/ч Кислорода). Эти установки производят технологический Кислород с концентрацией 95-98,5%, технический - с концентрацией 99,2-99,9% и более чистый, медицинский Кислород, выдавая продукцию в жидком и газообразном виде. Расход электрической энергии составляет от 0,41 до 1,6 квт·ч/м3."

"Большое количество кислорода используется в промышленности, в медицине, в других областях человеческой деятельности. Промышленные количества кислорода получают из жидкого воздуха. Сначала воздух сжимают мощными компрессорами – при этом он, как любой сжимаемый газ, сильно нагревается. Если вам приходилось энергично накачивать велосипедную камеру, то вы должны помнить, что корпус насоса и шланг нагреваются довольно заметно.

Сжатый воздух в больших баллонах-емкостях охлаждается. Затем его подвергают быстрому расширению через узкие каналы, снабженные турбинками для дополнительного отбора энергии у молекул газа. Эти устройства называются турбодетандерами. При расширении любого газа всегда происходит его охлаждение. Если газ был сжат очень сильно, то его расширение может привести к такому сильному охлаждению, что часть воздуха сжижается. Жидкий воздух собирают в специальные сосуды, называемые сосудами Дьюара. Жидкий кислород кипит при более "высокой" температуре (-183 оС), чем жидкий азот (-196 оС). Поэтому при "нагревании" жидкого воздуха, когда температура этой очень холодной жидкости медленно повышается от -200 оС до -180 оС, прежде всего при -196 оС перегоняется азот (который опять сжижают) и только следом перегоняется кислород. Если такую перегонку жидких азота и кислорода произвести неоднократно, то можно получить весьма чистый кислород."
"В промышленности кислород получают из атмосферного воздуха методом глубокого охлаждения и ректификации воздуха.
В установках для получения кислорода и азота из воздуха последний очищают от вредных примесей, сжимают в компрессоре до соответствующего давления холодильного цикла 0,6-20 МПа (6-200 кгс/см2), охлаждают в теплообменниках до температуры сжижения и в жидком состоянии подвергают разделению (низкотемпературной ректификации (см. примечание 1) ) на кислород и азот. Разница в температурах сжижения (кипения) кислорода и азота составляет около 13°, что достаточно для их полного разделения в жидкой фазе.

Для первоначального охлаждения аппаратов блока разделения воздуха и компенсации потерь холода применяют холодильные циклы. В этих циклах используют два основных метода получения низких температур реальных газов: 1) дросселирование сжатого воздуха; 2) расширение сжатого воздуха в поршневом детандере или турбодетандере (детандирование).
При дросселировании сжатого газа его охлаждение происходит за счет использования внутренней энергии газа на преодоление внутренних сил сцепления между частицами газа и внешних сопротивлений увеличению его объема при расширении. При детандировании газ охлаждается в значительно большей степени, чем при дросселировании, так как его внутренняя энергия расходуется также на производство внешней работы в результате политропического расширения газа в детандере. В современных установках применяют также сложные комбинированные циклы с целью снижения удельных затрат энергии на получение кислорода или азота. В крупных современных установках разделения воздуха применяется в качестве основного холодильный цикл низкого давления с турбодетандером. Более мелкие установки строят по циклам среднего давления с детандером. Цикл с одним дросселированием используют теперь только в очень небольших установках. Для получения жидкого кислорода или азота используют циклы высокого давления с детандером, а в очень крупных установках - цикл низкого давления с турбодетандером и дополнительным азотным холодильным циклом.

Примечание 1. Ректификацией называется процесс многократного испарения и конденсации жидкости на тарелках разделительного аппарата - так называемой ректификационной колонны, при котором в верхней части колонны собираются пары, состоящие из чистого легкокипящего компонента (азота), а в нижней - жидкость, содержащая в основном менее летучий компонент (кислород)."

СПАСИБО Академику ПЕТРУ ЛЕОНИДОВИЧУ КАПИЦЕ!


Пётр Леонидович Капица (26 июня (9 июля) 1894, Кронштадт - 8 апреля 1984, Москва) - физик, академик АН СССР (1939), член Президиума АН СССР (с 1957), дважды Герой Социалистического Труда (1945, 1974).

Лауреат Нобелевской премии по физике (1978) за фундаментальные открытия и изобретения в области физики низких температур. Дважды лауреат Сталинской премии (1941, 1943). Награждён большой золотой медалью имени М. В. Ломоносова АН СССР (1959). Один из основателей Московского физико-технического института. Член Еврейского антифашистского комитета.

О его работе над созданием установки по получению жидкого кислорода можно прочитать здесь: http://vivovoco.rsl.ru/VV/PAPERS/KAPITZA/KAP_17.HTM

там же есть и схема установки для получения ЖК.

Фракционная (дробная) перегонка имеет целый ряд важных применений, например получение кислорода, азота и благородных газов из жидкого воздуха, переработка нефти, производство алкогольных напитков (см, вводный текст к данной главе) и т. д.

На рис. 6.16 схематически изображена типичная лабораторная установка для фракционной перегонки. Вертикальная колонка наполнена стеклянными шариками или беспорядочно ориентированными короткими отрезками стеклянных трубок. Вместо этого может использоваться колонка пузырчатой формы. Такая колонка позволяет возгоняющимся парам вступать в контакт со стекающей вниз жидкостью.

Посмотрим, что происходит при фракционной перегонке двухкомпонентной смеси состава хА(С) (рис. 6.17). При нагревании этой смеси ее температура повышается до точки С. Затем жидкость начинает кипеть. Образующийся пар богаче жидкости более летучим компонентом А. При температуре кипения этот пар и жидкость находятся в равновесии. Этому равновесию соответствует соединительная линия CD на фазовой диаграмме. Пар, поднимающийся по фракционной колонке, постепенно остывает и в конце концов конденсируется в жидкость. Это уменьшение температуры представлено на фазовой диаграмме вертикальной линией DD". В точке D" устанавливается новое равновесие между конденсатом, который имеет состав xA(D), и его паром, который имеет состав хА (E). Жидкий конденсат стекает по колонке, а пар поднимается по ней. Таким образом, на каждом уровне колонки стекающая жидкость и поднимающийся пар находятся в равновесии. Эти равновесия представлены соединительными линиями. По мере того как пар поднимается по колонке, проходя через каждое следующее равновесие, он все больше обогащается более летучим компонентом. В конце концов пар выходит через отверстие вверху колонки, конденсируется и образовавшаяся жидкость стекает в приемник. Тем временем жидкость в колбе все больше обогащается менее летучим компонентом, и вследствие этого ее температура кипения постепенно повышается.

Из-за удаления пара через отверстие вверху колонки равновесия в ней непрерывно смещаются. Хорошее разделение достигается только в том случае, если колбу нагревают достаточно медленно, чтобы дать время установиться равновесиям. На практике фракционная перегонка обычно используется для разделения многокомпонентных жидких смесей.


В Уганде распространено изготовление алкогольного напитка «ингули», который получают фракционной перегонкой пива в самодельных перегонных аппаратах.В Уганде владельцы лицензий на изготовление ингули сбывают свою продукцию на промышленные перегонные предприятия, где из него получают алкогольны напиток, называемый «вараги». Самодельный ингули и аналогичные самодельны алкогольные напитки, изготовляемые в восточноафриканских странах, опасны дл употребления, поскольку вторая фракция нередко содержит токсичные примес первой и третьей фракций. По этой причине в большинстве восточноафрикански стран действует запрет на изготовление и употребление подобных алкогольны напитков.

Ингули. Сбраживанием сусла из патоки и бананового сока получают африканское пиво «ингули» , из которого путем перегонки собирают три фракции.

Первая фракция содержит токсичные низкокипящие альдегиды, кетоны спирты. Например, пропаналь (т. кип. 48 "С, токсичен), пропанон (т. кип. 56 0C токсичен) и метанол (т. кип. 64 °С, очень токсичен, вызывает потерю зрения). Эт фракцию уничтожают.

Вторая фракция перегонки представляет собой целевой продукт ингули. О. содержит воду и этанол. Этанол (этиловый спирт) имеет температуру кипения 78 0C. при употреблении в небольших количествах не приносит вреда (см., однако, вводны текст в начале данной главы).

Третья фракция содержит спирты с температурами кипения в диапазоне от 12 до 130°С. Эту фракцию тоже уничтожают.

СВОЙСТВА КИСЛОРОДА И СПОСОБЫ ЕГО ПОЛУЧЕНИЯ

Кислород О 2 является наиболее распространенным элементом на земле. Он находится в большом количестве в виде химических соединений с различными веществами в земной коре (до 50% вес.), в соединении с водородом в воде (около 86% вес.) и в свободном состоянии в атмосферном воздухе в смеси главным образом с азотом в количестве 20,93% об. (23,15% вес.).

Кислород имеет большое значение в народном хозяйстве. Он широко применяется в металлургии; химической промышленности; для газопламенной обработки металлов, огневого бурения твердых горных пород, подземной газификации углей; в медицине и различных дыхательных аппаратах, например для высотных полетов, и в других областях.

В нормальных условиях кислород представляет собой газ без цвета, запаха и вкуса, не горючий, но активно поддерживающий горение. При весьма низких температурах кислород превращается в жидкость и даже твердое вещество.

Важнейшие физические константы кислорода следующие:

Молекулярный вес 32
Вес 1 м 3 при 0° С и 760 мм рт. ст. в кг 1,43
То же при 20° С и 760 мм рт. ст. в кг 1,33
Критическая температура в °С -118
Критическое давление в кгс/м 3 51,35
Температура кипения при 760 мм рт. ст. в °С -182,97
Вес 1 л жидкого кислорода при -182, 97 °С и 760 мм рт. ст. в кг.
1,13
Количество газообразного кислорода, получающегося из 1 л жидкого при 20 °С и 760 мм рт. ст. в л
850
Температура затвердевания при 760 мм рт. ст. в °С -218,4

Кислород обладает большой химической активностью и образует соединения со всеми химическими элементами, кроме редких газов. Реакции кислорода с органическими веществами имеют резко выраженный экзотермический характер. Так, при взаимодействии сжатого кислорода с жировыми или находящимися в мелкодисперсном состоянии твердыми горючими веществами происходит мгновенное их окисление и выделяющееся тепло способствует самовозгоранию этих веществ, что может быть причиной пожара или взрыва. Это свойство особенно необходимо учитывать при обращении с кислородной аппаратурой.

Одним из важных свойств кислорода является способность его образовывать в широких пределах взрывчатые смеси с горючими газами и парами жидких горючих, что также может привести к взрывам при наличии открытого огня или даже искры. Взрывчатыми являются и смеси воздуха с газо- или парообразными горючими.

Кислород может быть получен: 1) химическими способами; 2) электролизом воды; 3) физическим способом из воздуха.

Химические способы, заключающиеся в получении кислорода из различных веществ, малопроизводительны и в настоящее время имеют лишь лабораторное значение.

Электролиз воды, т. е. разложение ее на составляющие - водород и кислород, осуществляется в аппаратах, называемых электролизерами. Через воду, в которую для повышения электропроводности добавляется едкий натр NaOH, пропускается постоянный ток; кислород собирается на аноде, а водород - на катоде. Недостатком способа является большой расход электроэнергии: на 1 м 3 0 2 (кроме того, получается 2 м 3 Н 2) расходуется 12-15 квт. ч. Этот способ рационален при наличии дешевой электроэнергии, а также при получении электролитического водорода, когда кислород является отходом производства.

Физический способ заключается в разделении воздуха на составляющие методом глубокого охлаждения. Этот способ позволяет получать кислород практически в неограниченном количестве и имеет основное промышленное значение. Расход электроэнергии на 1 м 3 О 2 составляет 0,4-1,6 квт. ч, в зависимости от типа установки.

ПОЛУЧЕНИЕ КИСЛОРОДА ИЗ ВОЗДУХА

Атмосферный воздух в основном представляет собой механическую смесь трех газов при следующем объемном их содержании: азота - 78,09%, кислорода - 20,93%, аргона - 0,93%. Кроме того, в нем содержится около 0,03% углекислого газа и малые количества редких газов, водорода, закиси азота и др.

Главная задача при получении кислорода из воздуха заключается в разделении воздуха на кислород и азот. Попутно производится отделение аргона,-применение которого в специальных способах сварки непрерывно возрастает, а также и редких газов, играющих важную роль в ряде производств. Азот имеет некоторое применение в сварке как защитный газ, в медицине и других областях.

Сущность способа заключается в глубоком охлаждении воздуха с обращением его в жидкое состояние, что при нормальном атмосферном давлении может быть достигнуто в интервале температур от —191,8° С (начало сжижения) до -193,7° С (окончание сжижения).

Разделение жидкости на кислород и азот осуществляется путем использования разности температур их кипения, а именно: Т кип. о2 = -182,97° С; Т кип.N2 = -195,8° С (при 760 мм рт. ст.).

При постепенном испарении жидкости в газообразную фазу в первую очередь будет переходить азот, имеющий более низкую температуру кипения и по мере его выделения жидкость будет обогащаться кислородом. Многократное повторение этого процесса позволяет получить кислород и азот требуемой чистоты. Такой способ разделения жидкостей на составные части называется ректификацией.

Для производства кислорода из воздуха имеются специализированные предприятия, оснащенные высокопроизводительными установками. Кроме того, на крупных металлообрабатывающих предприятиях имеются свои кислородные станции.

Низкие температуры, необходимые для сжижения воздуха, получают с помощью так называемых холодильных циклов. Ниже кратко рассматриваются основные холодильные циклы, используемые в современных установках.

Холодильный цикл с дросселированием воздуха основан на эффекте Джоуля—Томсона, т. е. резком снижении температуры газа при свободном его расширении. Схема цикла приведена на рис. 2.

Воздух сжимается в многоступенчатом компрессоре 1 до 200 кгс/см 2 и затем проходит через холодильник 2 с проточной водой. Глубокое охлаждение воздуха происходит в теплообменнике 3 обратным потоком холодного газа из сборника жидкости (ожижителя) 4. В результате расширения воздуха в дроссельном вентиле 5 он дополнительно охлаждается и частично сжижается.

Давление в сборнике 4 регулируется в пределах 1—2 кгс/см 2 . Жидкость периодически сливается из сборника в специальные емкости через вентиль 6. Несжиженная часть воздуха отводится через теплообменник, производя охлаждение новых порций поступающего воздуха.

Охлаждение воздуха до температуры сжижения происходит постепенно; при включении установки имеется пусковой период, в течение которого сжижения воздуха не наблюдается, а происходит лишь охлаждение установки. Этот период занимает несколько часов.

Достоинством цикла является его простота, а недостатком — относительно высокий расход электроэнергии — до 4,1 квт. ч на 1 кг сжиженного воздуха при давлении в компрессоре 200 кгс/см 2 ; при меньшем давлении удельный расход электроэнергии резко возрастает. Данный цикл применяется в установках малой и средней производительности для получения газообразного кислорода.

Несколько более сложным является цикл с дросселированием и предварительным аммиачным охлаждением воздуха.

Холодильный цикл среднего давления с расширением в детандере основан на понижении температуры газа при расширении с отдачей внешней работы. Кроме того, используется и эффект Джоуля— Томсона. Схема цикла приведена на рис. 3.

Воздух сжимается в компрессоре 1 до 20-40 кгс/см 2 , проходит через холодильник 2 и затем через теплообменники 3 и 4. После теплообменника 3 большая часть воздуха (70-80%) направляется в поршневую расширительную машину-детандер 6, а меньшая часть воздуха (20-30%) идет на свободное расширение в дроссельный вентиль 5 и далее сборник 7, имеющий кран 8 для слива жидкости. В детандере 6

воздух, уже охлажденный в первом теплообменнике, производит работу - толкает поршень машины, давление его падает до 1 кгс/см 2 , за счет чего резко снижается температура. Из детандера холодный воздух, имеющий температуру около —100° С, выводится наружу через теплообменники 4 и 3, охлаждая поступающий воздух. Таким образом, детандер обеспечивает весьма эффективное охлаждение установки при сравнительно небольшом давлении в компрессоре. Работа детандера используется полезно и это частично компенсирует затрату энергии на сжатие воздуха в компрессоре.

Достоинствами цикла являются: сравнительно небольшое давление сжатия, что упрощает конструкцию компрессора и повышенная холодопроизводительность (благодаря детандеру), что обеспечивает устойчивую работу установки при отборе кислорода в жидком виде.

Холодильный цикл низкого давления с расширением в турбодетандере, разработанный акад. П. Л. Капицей, основан на применении воздуха низкого давления с получением холода только за счет расширения этого воздуха в воздушной турбине (турбодетандере) с производством внешней работы. Схема цикла приведена на рис. 4.

Воздух сжимается турбокомпрессором 1 до 6-7 кгс/см 2 , охлаждается водой в холодильнике 2 и поступает в регенераторы 3 (теплообменники), где охлаждается обратным потоком холодного воздуха. До 95% воздуха после регенераторов направляется в турбодетандер 4, расширяется до абсолютного давления 1 кгс/см 2 с выполнением внешней работы и при этом резко охлаждается, после чего он подается в трубное пространство конденсатора 5 и конденсирует остальную часть сжатого воздуха (5%), поступающую в межтрубное пространство. Из конденсатора 5 основной поток воздуха направляется в регенераторы и охлаждает поступающий воздух, а жидкий воздух пропускается через дроссельный вентиль 6 в сборник 7, из которого сливается через вентиль 8. На схеме показан один регенератор, а в действительности их ставят несколько и включают поочередно.

Достоинствами цикла низкого давления с турбодетандером являются: более высокий к. п. д. турбомашин по сравнению с машинами поршневого типа, упрощение технологической схемы, повышение надежности и взрывобезопасности установки. Цикл применяется в установках большой производительности.

Разделение жидкого воздуха на составляющие осуществляется посредством процесса ректификации, сущность которого состоит в том, что образующуюся при испарении жидкого воздуха парообразную смесь азота и кислорода пропускают через жидкость с меньшим содержанием кислорода. Поскольку кислорода в жидкости меньше, а азота больше, то она имеет более низкую температуру, чем проходящий через нее пар, а это вызывает конденсацию кислорода из пара и обогащение им жидкости с одновременным испарением из жидкости азота, т. е. обогащение им паров над жидкостью.

Представление о сущности процесса ректификации может дать приведенная на рис. 5 упрощенная схема процесса многократного испарения и конденсации жидкого воздуха.

Принимаем, что воздух состоит только из азота и кислорода. Представим, что имеется несколько соединенных друг с другом сосудов (I—V), в верхнем находится жидкий воздух с содержанием 21% кислорода. Благодаря ступенчатому расположению сосудов жидкость будет стекать вниз и при этом постепенно обогащаться кислородом, а температура ее будет повышаться.

Допустим, что в сосуде II находится жидкость, содержащая 30% 0 2 , в сосуде III — 40%, в сосуде IV — 50% и в сосуде V — 60% кислорода.

Для определения содержания кислорода в паровой фазе воспользуемся специальным графиком — рис. 6, кривые которого указывают содержание кислорода в жидкости и паре при различных давлениях.

Начнем испарять жидкость в сосуде V при абсолютном давлении 1 кгс/см 2 . Как видно из рис. 6, над жидкостью в этом сосуде, состоящей из 60% 0 2 и 40% N 2 , может находиться равновесный по составу пар, содержащий 26,5% 0 2 и 73,5% N 2 , имеющий такую же температуру, что и жидкость. Подаем этот пар в сосуд IV, где жидкость содержит только 50% 0 2 и 50% N 2 и поэтому будет более холодной. Из рис. 6 видно, что над этой жидкостью пар может содержать лишь 19% 0 2 и 81% N 2 , и только в этом случае его температура будет равна температуре жидкости в данном сосуде.

Следовательно, подводимый в сосуд IV из сосуда V пар, содержащий 26,5% О 2 , имеет более высокую температуру, чем жидкость в сосуде IV; поэтому кислород пара конденсируется в жидкости сосуда IV, а часть азота из нее будет испаряться. В результате жидкость в сосуде IV обогатится кислородом, а пар над нею - азотом.

Аналогично будет происходить процесс и в других сосудах и, таким образом, при сливе из верхних сосудов в нижние жидкость обогащается кислородом, конденсируя его из поднимающихся паров и отдавая им свой азот.

Продолжая процесс вверх, можно получить пар, состоящий почти из чистого азота, а в нижней части - чистый жидкий кислород. В действительности процесс ректификации, протекающий в ректификационных колоннах кислородных установок, значительно сложнее описанного, но принципиальное его содержание такое же.

Независимо от технологической схемы установки и вида холодильного цикла процесс производства кислорода из воздуха включает следующие стадии:

1) очистка воздуха от пыли, паров воды и углекислоты. Связывание СО 2 достигается пропусканием воздуха через водный раствор NaOH;

2) сжатие воздуха в компрессоре с последующим охлаждением в холодильниках;

3) охлаждение сжатого воздуха в теплообменниках;

4) расширение сжатого воздуха в дроссельном вентиле или детандере для его охлаждения и сжижения;

5) сжижение и ректификация воздуха с получением кислорода и азота;

6) слив жидкого кислорода в стационарные цистерны и отвод газообразного в газгольдеры;

7) контроль качества получаемого кислорода;

8) наполнение жидким кислородом транспортных резервуаров и наполнение баллонов газообразным кислородом.

Качество газообразного и жидкого кислорода регламентируется соответствующими ГОСТами.

По ГОСТу 5583-58 выпускается газообразный технический кислород трех сортов: высший — с содержанием не менее 99,5% О 2 , 1-й — не менее 99,2% О 2 и 2-й — не менее 98,5% О 2 , остальное — аргон и азот (0,5—1,5%). Содержание влаги не должно превышать 0,07 г/ж 3 . Кислород, получаемый электролизом воды, не должен содержать водорода более 0,7% по объему.

По ГОСТу 6331-52 выпускается жидкий кислород двух сортов: сорт А с содержанием не менее 99,2% О 2 и сорт Б с содержанием не менее 98,5% О 2 . Содержание ацетилена в жидком кислороде не должно превышать 0,3 см 3 /л.

Применяемый для интенсификации различных процессов на предприятиях металлургической, химической и других отраслей промышленности технологический кислород содержит 90—98% О 2 .

Контроль качества газообразного, а также и жидкого кислорода производится непосредственно в процессе производства с помощью специальных приборов.

Администрация Общая оценка статьи: Опубликовано: 2012.06.01

4.2.1. Общие сведения

Достаточно полное разделение воздуха достигается в результате непрерывной ректификации, которая осуществляться в ректификационных колоннах. Схема такой колонны представлена на рис.4.4.

В нее на разделение подается жидкая бинарная смесь веществ (А+К). В колонне создаются два непрерывных встречных потока: вверх – пары; вниз – жидкость.

В испарителе к жидкой смеси подводится теплота Q и, под воздействием которой жидкость кипит. Пар поднимается по колонне и при этом он обогащается легкокипящим компонентом.

Рис.4.4. Схема ректификационной колонны и процесса ректификации бинарного раствора в ней

Это происходит потому, что верхняя часть колонны холоднее, а нижняя теплее. Таким образом, пар поднимающийся вверх постепенно охлаждается, а жидкость стекающая вниз, постепенно нагревается. За счет разности температур по высоте колонны происходит непрерывный процесс тепломассообмена.

Продукты разделения выводятся из колонны как в жидком, так и парообразном состоянии, как показано на схеме.

Термодинамические основы и принцип работы ректификационной колонны не зависят от температурного уровня проходящих в ней процессов. Т.е. внутренние процессы одинаковы и при Т >Т о.с и Т <Т о.с.

Но во внешних процессах, т.е. в подводе теплоты Q и и отводе Q к есть отличия. Нельзя организовать непосредственный нагрев в испарителе, а также охлаждение в конденсаторе. Так как процесс конденсации происходит при криогенных температурах, то для его организации необходимы циклы криогенного обеспечения. Они требуют значительных затрат энергии. Тем более, что потери при низких температурах всегда выше, чем при высоких.

Например : при подводе в испарителе 1000 кДж теплоты при t и =200°С (473 К) ее ценность (в единицах эксергии) составит

При отводе из конденсатора такого же количества теплоты Q к =1000 кДж при температуре t к =-200°С (73 К), его ценность составит

т.е. примерно в 8 раз больше.

Организовать нагрев в испарителе за счет внешнего теплоподвода просто – достаточно нарушить теплоизоляцию. Но этот путь неприемлем, т.к. эту теплоту затем нужно будет удалять в конденсаторе. И, как мы видели, очень дорогой ценой. Поэтому теплота испарения, обычно, отбирается у самого сжижаемого газа (воздуха).

4.2.2. Колонна однократной ректификации (для получения кислорода)

Это наиболее простое устройство для ректификации воздуха. Для лучшего понимания на рис.4.5 вместе с колонной приведена схема сжижения воздуха по К. Линде, хотя можно применить любую другую схему.

Рис. 4.5. Схема колонны однократной ректификации для получения кислорода в блоке с воздухосжижительной установкой К.Линде

Работа установки в процессах:

1-2 – изотермическое сжатие атмосферного воздуха;

2-3 – охлаждение сжатого воздуха в теплообменнике ТО встречными потоками азота (А), кислорода (К) воздуха (В);

3-4 – сжижение воздуха в змеевике испарителя. Здесь воздух является источником теплоты Q и;

4-5 – дросселирование. Флегма при давлении Р »0,1 МПа подается на верхнюю тарелку колонны;

В т.6 отводятся пары азота, но не чистые, а равновесные кипящему воздуху при температуре Т 5 (в т.5). Поэтому они содержат примерно 10-12 % кислорода. Пары отводятся в ТО, где охлаждают встречный поток сжатого воздуха, идущего в змеевик испарителя для конденсации.

В испарителе колонны скапливается кислород (как более труднокипящая жидкость). Он может отводиться в жидком (в т. 7") или газообразном (в т. 7) виде.

В такой установке можно получить до 2/3 технически чистого кислорода от общего количества кислорода в воздухе переработанного установкой. Около 1/3 теряется с азотом. Давление в колонне близко к атмосферному и не превышает 0,13-0,15 МПа.

4.2.3. Колонна однократной ректификации для получения азота

Особенность этой колонны – наличие конденсатора.

Рис.4.6. Схема колонны однократной ректификации для получения азота:

ТО – теплообменник

Сжатый и охлажденный воздух через дроссельный вентиль подается в куб колонны, при этом происходит его сжижение и частичное испарение. Обогащенный азотом пар по колонне поднимается вверх на встречу стекающей флегме и, уже практически чистый азот, попадает в трубное пространство конденсатора. Здесь азот конденсируется за счет отвода теплоты кипящему обогащенным кислородом жидкому воздуху, который поступает из куба через дроссель Др 2 в межтрубное пространство конденсатора.

Флегма, образующаяся в конденсаторе, по существу чистый азот, стекая вниз по колонне скапливается в карманах конденсатора и отводится как конечный продукт в жидком виде.

Чистые пары азота скапливаются под крышкой конденсатора. Отсюда они отводятся как конечный продукт – газообразный азот.

Обогащенный кислородом воздух из межтрубного пространства конденсатора используется для охлаждения сжатого воздуха в ТО.

4.2.4. Колонна двукратной ректификации

Колонну двукратной ректификации разработал и создал К. Линде в 1907 г. для разделения воздуха. Она позволяет более полно извлекать кислород из воздуха и дает возможность получать не только технически чистый кислород (99,2 % О 2), но и технически чистый азот (99,99 % N 2).

В эту установку составной частью входит колонна однократной ректификации. Аппарат состоит из двух частей (см. рис.4.7): колонны высокого давления (нижняя часть) и колонны низкого давления (верхняя часть).

Рис.4.7. Схема колонны двукратной ректификации с подачей насыщенного воздуха непосредственно в куб

Работа схемы .

Сжатый воздух, охлажденный в теплообменнике (ТО), дросселируется в Др 1 и поступает в куб нижней колонны. При этом он частично сжижается. Обогащенная кислородом жидкость (35-36 % О 2) собирается в нижней части колонны – в кубе. Отсюда она через дроссельный вентиль Др 2 поступает, как исходная жидкость (смесь), в середину верхней части колонны для разделения.

Обогащенный азотом пар в нижней колонне поднимается в трубное пространство конденсатора-испарителя (К-И), где в межтрубном пространстве кипит кислород. Чтобы этот обогащенный азотом пар сконденсировался, надо, чтобы его температура конденсации была выше температуры кипящего кислорода на 2-4 градуса.

Давление в верхней колонне, как и в колонне однократной ректификации, немного выше атмосферного (0,13-0,15 МПа). Температура кипения кислорода при этом будет равна 93-94 К. Следовательно температура азота в нижней колонне должна быть равной 96-97 К. Эта температура может быть температурой конденсации азота при давлении 0,56-0,6 МПа. Именно такое давление устанавливается в нижней колонне.

Жидкий, сконденсировавшийся азот из К-И стекает в нижнюю колонну. Пары поднимаются ему на встречу и обогащаются при этом азотом. Часть жидкого азота скапливается в карманах и в виде флегмы направляется на орошение верхней колонны через ДР 3 . Это позволяет в верхней части колонны получать технически чистый азот.

Таким образом, в результате двойной ректификации воздуха из конденсатора отводится кислород, а из верхней части колонны – азот. После прохождения ТО они являются конечными продуктами.

В установках небольшой производительности удобнее и эффективнее применять колонны двукратной ректификации с подачей воздуха высокого давления через змеевик в кубе (см. рис.4.8).

Рис.4.8. Схема колонны двукратной ректификации с подачей насыщенного сжатого воздуха через змеевик в кубе нижней колонны

В этом змеевике воздух полностью конденсируется и одновременно осуществляется испарение жидкости в испарителе (кубе). Жидкость в кубе обогащается кислородом до 45 % (выше, чем в предыдущей схеме). Это позволяет увеличить флегмовое число (по азоту) в верхней колонне и, следовательно, улучшить показатели установки.