Самые мощные двигатели в мире. Все о двигателях внутреннего сгорания и особенностях их работы Бонус. невероятные двигатели не ставшие серийными образцами: chrysler a57 multibank

Уже более 100 лет в легковом автомобилестроение используются двигатели внутреннего сгорания и за все это время никаких революционных изменений в их работе или промышленном строение придумано не было. Однако, недостатков у этих моторов предостаточно. Борьбу с ними инженеры вели всегда, как ведут и по сей день. Случается, что некоторые идеи перерастают в довольно оригинальные и впечатляющие технические решения. Одни из которых так и остаются на стадии разработки, а другие воплощаются в жизнь на некоторых сериях автомобилей.

Поговорим о наиболее интересных инженерных разработках в области «автодвигателей»

Заметные факты истории

Классический четырехтактный мотор был изобретен в далеком 1876 году одним немецким инженером по имени Николаус Отто, цикл работы такого двигателя внутреннего сгорания (ДВС) прост: впуск, сжатие, рабочий ход, выпуск. Но уже через 10 лет после варианта Отто британский изобретатель Джеймс Аткинсон предложил усовершенствовать данную схему. На первый взгляд цикл Аткинсона, его порядок тактов и принцип работы такой же как и двигателя, который изобрел немец. Однако, по сути это абсолютно другая и весьма оригинальная система.

Перед тем как мы расскажем об изменениях в классическом строении ДВС, посмотрим о принципе работы такого двигателя, чтобы всем было понятно о чем мы говорим.

3-D модель работы ДВС:

Комментарии и простейшая схема ДВС:

Цикл Аткинсона

Во-первых, в двигателе Аткинсона имеется уникальный коленчатый вал, обладающий смещенными точками крепления.

Такая новация позволила сократить количество потерь на трение и увеличить уровень сжатия двигателя.

Во-вторых, двигатель Аткинсона имеет иные фазы распределения газа. В отличие от двигателя Отто, где клапан впуска закрывается почти сразу после прохождения поршнем нижней точки, в двигателе британского изобретателя такт впуска намного длиннее, в результате чего клапан совершает закрытие, когда поршень уже на полпути к верхней мертвой точке цилиндра. В теории такая система должна была улучшить процесс наполнения цилиндров, что в свою очередь привело бы к экономии топлива и увеличению показателей мощности мотора.

В общем-то, цикл Аткинсона на 10% показательней по эффективности, чем цикл Отто. Но все же серийно автомобили с таким ДВС не выпускались и не выпускаются.

Цикл Аткинсона на практике

А дело все в том, что обеспечить свою нормальную работу такой двигатель может только на повышенных оборотах, при холостых — он так и стремится заглохнуть. Чтобы этого не происходило, разработчики и инженеры пытались внедрить в систему нагнетатель с механикой, но его установка, как выяснилось, сводит практически к нулю все плюсы и достоинства двигателя Аткинсона. В виду этого серийно автомобили с таким двигателем практически не выпускались. Один из самых известных — Mazda Xedos 9/Eunos 800, выпускаемая в 1993-2002 годах. Автомобиль оснащался 2,3-литровым двигателем V6, с мощность в 210 л.с.

Mazda Xedos 9/Eunos 800:

А вот производители гибридных автомобилей с радостью стали применять в разработках данный цикл ДВС. Потому как при малой скорости такая машина движется, используя свой электрический двигатель , а для разгона и быстрой езды ей нужен бензиновый, тут-то и можно по максимуму воплотить в жизнь все достоинства цикла Аткинсона.

Золотниковое газораспределение

Главным источником шума в двигателе автомобиля является газораспределительный механизм, ведь в нем довольно много движущихся частей — различные клапаны, толкатели, распределительные валы и т.д. Многие изобретатели пытались «утихомирить» такой громоздкий механизм. Пожалуй, больше всего это удалось американскому инженеру Чарльзу Найту. Он изобрел свой собственный двигатель.

В нем нет ни стандартных клапанов, ни привода к ним. Заменяют эти детали — золотники, в форме двух гильз, которые размещены между поршнем и цилиндром. Уникальный привод заставлял двигаться золотники в верхнее и нижнее положение, они в свою очередь открывали в нужный момент окна в цилиндре, куда поступало топливо, а в атмосферу выделялись выхлопные газы.

Для начала XX века такая система была довольно бесшумной. Не мудрено, что ей стало интересоваться все большее и большее количество автопроизводителей.

Только вот стоил такой двигатель далеко не дешево, поэтому и прижился он только на престижных марках, типа Mercedes-Benz, Daimler или Panhard Levassor, покупатели которых гнались за максимальным комфортом, а не дешевизной.

Но век мотора, изобретенного Найтом, оказался недолгим. И уже в 30-ые годы прошлого столетия автопроизводители поняли, что двигатели такого типа довольно не практичны, потому как конструкция их не совсем надежна, а высокая степень трения между золотниками увеличивает и расход топлива и масла. Потому-то узнать автомобиль с ДВС такого типа можно было по сизому дымку из выхлопной трубы автомобиля от горящей смазки.

В мировой практике было множество всевозможных решений в области модернизации классического двигателя внутреннего сгорания, однако, его первоначальная схема сохранилась до сих пор. Некоторые автопроизводители конечно же применяют на практике открытия успешных ученых и умельцев, но по своей сути, ДВС — остался прежним.

В статье использованы изображения с сайтов www.park5.ru, www.autogurnal.ru

Неважно для чего были сделаны эти , в попытке создания самого экономичного мотора или наоборот, самого мощного. Важен другой факт- эти двигатели были созданы и они существуют в реальных рабочих экземплярах. Мы рады этому и предлагаем нашим читателям вместе с нами посмотреть на 10 самых сумасшедших автомобильных двигателей, которые нам удалось найти .

Для составления нашего списка 10 сумасшедших автомобильных двигателей мы придерживались некоторых правил: в него попали только силовые установки серийных легковых автомобилей; никаких гоночных экземпляров моторов или экспериментальных моделей, потому что они необычны, по определению. Мы также не использовали двигатели из разряда «самых-самых», самые большие или самые мощные, исключительность рассчитывалась по другим критериям. Непосредственная цель данной статьи- подчеркнуть необычную, иногда и сумасшедшую, конструкцию двигателя.

Господа, заводите ваши моторы!


8.0-литров, более 1000 л.с. W-16 является самым мощным и сложным в производстве двигателем в истории. Он имеет 64 клапана, четыре турбонагнетателя, и достаточный крутящий момент, чтобы изменить направление вращения Земли- 1500 Нм при 3.000 оборотах в минуту. Его W-образный, 16-цилиндровый, по сути соединивший в себе несколько двигателей, никогда не существовал до, и, на какой-либо другой модели, кроме, нового автомобиля . Кстати, этот двигатель гарантированно отработает весь срок своей службы без поломок, производитель уверяет в этом.

Bugatti Veyron W-16 (2005-2015)


Bugatti Veyron, единственный автомобиль на сегодняшнее время, на котором можно повстречать в действии W образного монстра. Bugatti открывает список (На фото 2011 16.4 Super Sport).


В начале прошлого века, у автомобильного инженера Чарльза Найта Йельского случилось прозрение. Традиционные тарельчатые клапаны, рассуждал он, были слишком сложными, возвратные пружины и толкатели слишком неэффективными. Он создал собственный вид клапанов. Его решение окрестили «золотниковый клапан»- скользящая вокруг поршня муфта с приводом от редукторного вала, который открывает впускные и выпускные порты в стенке цилиндра.

Knight Sleeve Valve (1903-1933)


Удивительно, но это работало. Двигатели с золотниковыми клапанами предлагали высокую объемную производительность, низкий уровень шума, и отсутствие риска западания клапана. Недостатков было немного, в них входило увеличенное потребление масла. Найт запатентовал свою идею в 1908 году. Впоследствии она стала применяться всеми марками, от Mercedes-Benz до автомобилей Panhard и Peugeot. Технология ушла в прошлое, когда классические клапаны стали лучше справляться с высокими температурами и высокими оборотами. (1913 -Knight 16/45).


Представьте себе,1950-е годы, вы автопроизводитель пытающийся разработать новую модель автомобиля. Какой-то немецкий парень по имени Феликс приходит в ваш офис и пытается продать вам идею трехгранного поршня, вращающегося внутри овальной коробки (цилиндра специального профиля) для установки на вашу будущую модель. Вы согласились на такое? Скорее всего да! Работа этого вида двигателя настолько завораживает, что от созерцания этого процесса сложно оторваться.

Неотъемлемый минус всего необычного- сложность. В данном случае главная сложность заключалась в том, что двигатель должен быть неимоверно сбалансированным, с точно подогнанными частями.

Mazda/NSU Wankel Rotary (1958-2014)


Сам ротор является треугольным с выпуклыми гранями, три его угла- это вершины. При вращении ротора внутри корпуса, он создает три камеры, которые отвечают за четыре фазы цикла: впуск, сжатие, рабочий ход и выпуск. Каждая сторона ротора при работе двигателя выполняет одну из стадий цикла. Не зря роторно-поршневой тип двигателя является одним из самых эффективных ДВС в мире. Жаль нормального расхода топлива от двигателей Ванкеля так и не удалось добиться.

Необычный мотор, не так ли? А знаете, что еще более странное? Этот мотор был в производстве до 2012 года и ставился он на спорткар ! (1967-1972 Mazda Cosmo 110S).


Коннектикутская компания Eisenhuth Horseless Vehicle была основана Джоном Айзенхутом, человеком из Нью-Йорка, который утверждал, что изобрел бензиновый двигатель и имел неприятную привычку получать иски от своих деловых партнеров.

Его модели Compound 1904-1907 годов отличались установленными в них трехцилиндровыми двигателями, в которых две внешние цилиндры приводились в движение при помощи воспламенения, средний "мертвый" цилиндр работал за счет выхлопных газов первых двух цилиндров.

Eisenhuth Compound (1904-1907)


Eisenhuth сулил 47% увеличение топливной экономичности, чем это было в стандартных двигателях аналогичного размера. Гуманная идея пришлась не ко двору в начале XX века. Об экономии тогда никто не помышлял. Итог- банкротство в 1907 году. (на фото 1906 Eisenhuth Compound Model 7.5)


Оставьте для французов возможность разрабатывать интересные двигатели, выглядящие обычными на первый взгляд. Известный Гальский производитель Panhard, в основном запомнился своей одноименной реактивной штангой- тягой Панара, устанавливал в свои послевоенные автомобили серию оппозитных моторов с воздушным охлаждением и алюминиевыми блоками.

Panhard Flat-Twin (1947-1967)


Объем варьировался от 610 до 850 см. куб. Выходная мощность была между 42 л.с. и 60 л.с., в зависимости от модели. Лучшая часть автомобилей? Panhard twin , когда-либо сумевшим побеждает в 24 Часах Ле-Ман. (на фото 1954 Panhard Dyna Z).


Странное название, конечно, но двигатель еще более странный. 3,3-литровый Commer TS3 был наддувным, оппозитно-поршневым, трёхцилиндровым, двухтактным дизельным двигателем. В каждом цилиндре по два поршня, стоящие друг напротив друга, с расположенной в одном цилиндре одной центральной свечой. У него не было головки цилиндров. Применялся один коленчатый вал (большинство оппозитных двигателей имеют два).

Commer/Rootes TS3 "Commer Knocler" (1954-1968)


Rootes Group придумала этот мотор для своей марки грузовых автомобилей и автобусов Commer. (Автобус Commer TS3)


Lanchester Twin-Crank Twin (1900-1904)


Результат составил 10,5 л.с. при 1.250 оборотах в минуту и отсутствие заметных вибраций. Если вы когда-нибудь задумывались, посмотрите на двигатель стоящий в этом автомобиле. (1901 Lanchester).


Как Veyron, лимитированная версия суперкара Cizeta (урожденная Cizeta-Moroder) V16T определяется своим двигателем. 560 сильный 6,0-литровый V16 в утробе Cizeta стал одним из самых раскрученных моторов своего времени. Интрига заключалась в том, что двигатель Cizeta, на поверку не являлся истинным V16. По факту это было два двигателя V8, объединенных в один. Для двух V8 использовался единый блок и центральный ГРМ. Что делает Это не делает его еще более безумным- расположение. Двигатель установлен поперечно, центральный вал подает энергию на задние колеса.

Cizeta-Moroder/Cizeta V16T (1991-1995)


Суперкар производился с 1991 по 1995 год, данный автомобиль имел ручную сборку. Изначально планировалось выпускать по 40 суперкаров в год, потом эта планка была снижена до 10, но в итоге почти за 5 лет производства было выпущено всего 20 автомобилей. (Фото 1991 Cizeta-16T Moroder)


Двигатели Commer Knocker были фактически вдохновлены на создание семейством этих французских двигателей со встречно установленными поршнями, которые производились с двумя-, четырьмя-, шести цилиндрами до начала 1920-х. Вот как это работает в двухцилиндровой версии: поршней в два ряда один напротив другого в общих цилиндрах таким образом, что поршни каждого цилиндра движутся навстречу друг другу и образуют общую камеру сгорания. Коленвалы механически синхронизированы, причем выхлопной вал вращается с опережением относительно впускного на 15-22°, мощность отбирается либо с одного из них, либо с обоих.

Gobron-Brillié Opposed Piston (1898-1922)


Серийные двигатели производились в диапазоне от 2.3-литровых «двоек», до 11,4-литровых шестерок. Была также монстрообразная 13,5-литровая четырехцилиндровая гоночная версия мотора. На автомобиле с таким мотором гонщик Луи Риголи впервые достиг скорости 160 км/ч в 1904 году (1900 Nagant-Gobron)

Adams-Farwell (1904-1913)


Если идея двигателя вращающегося позади, не смущает вас, то автомобили Adams-Farwell отлично для вас подойдут. Вращался правда не весь , только цилиндры и поршни, потому что коленчатые валы на этих трех-, пятицилиндровых двигателях были статическими. Расположенные радиально, цилиндры были с воздушным охлаждением и выступали в качестве маховика, как только двигатель запускали, и он начинал работать. Моторы имели небольшой вес для своего времени, 86 кг весил 4.3 литровый трехцилиндровый мотор и 120 кг- 8.0 литровый двигатель. Видео.

Adams-Farwell (1904-1913)


Сами автомобили были с задним расположением двигателя, пассажирский салон был перед тяжелым двигателем, компоновка идеально подходила для получения максимального урона пассажирами в результате несчастного случая. На заре автомобилестроения о качественных материалах и надежных конструкция не думали, в первых самодвижущихся каретах по старинке использовалось дерево, медь, изредка металл, не самого высокого качества. Наверное, было не очень комфортно ощущать работу 120 килограммового мотора раскручивавшегося до 1.000 об/мин за своей спиной. Тем не менее, автомобиль производился в течение 9 лет. (Фото 1906 Adams-Farwell 6A Convertible Runabout).


Тридцать цилиндров, пять блоков, пять карбюраторов, 20.5 литров. Этот двигатель в Детройте разработали специально для войны. Chrysler построил A57 как способ удовлетворить заказ на танковый двигатель для Второй мировой войны. Инженерам пришлось работать в спешке, максимально используя насколько это возможно имеющиеся в наличии компоненты.

БОНУС. Невероятные двигатели не ставшие серийными образцами: Chrysler A57 Multibank


Двигатель состоял из пяти 251 кубовых рядных шестерок от легковых автомобилей, расположенных радиально вокруг центрального выходного вала. На выходе получилось 425 л.с. использовавшихся в танках M3A4 Lee и M4A4 Sherman.


Вторым бонусом идет единственный гоночный двигатель попавший в обзор. 3,0-литровый мотор использовавшийся BRM (British Racing Motors), 32-клапанный двигатель Н-16, сочетающий в себе по существу, две плоских восьмерки (Н-образный двигатель — двигатель, конфигурация блока цилиндров которого представляет букву «Н» в вертикальном или горизонтальном расположении H-образный двигатель можно рассматривать как два оппозитных двигателя, расположенных один сверху другого или один рядом с другим, у каждого из которых есть свои собственные коленчатые валы) . Мощность спортивного двигателя конца 60-х годов была более чем высокой, более 400 л.с., но H-16 серьезно уступал другим модификациям по весу и надежности. один раз увидел подиум, на Grand Prix U.S., когда Джим Кларк одержал победу в 1966 году.

БОНУС. Невероятные двигатели не ставшие серийными образцами: British Racing Motors H-16 (1966-1968)


16-цилиндровый мотор был не единственный над которым колдовали ребята из BRM. Они также разработали наддувный 1,5-литровый V16. Он крутился до 12.000 об/мин и производил примерно 485 л.с. Наверное, было бы классно установиться такой двигатель на Toyota Corolla AE86, не раз задумывались над этим энтузиасты со всего мира.

Вечный двигатель (или Perpetuum mobile) - воображаемая машина, которая, будучи единажды приведенной в движение, сама по себе удерживается в этом состоянии сколь угодно долго, совершая при этом полезную работу (КПД больше 100 %). На протяжении всей истории лучшие умы человечества пытаются сгенерировать такое устройство однако в даже в начале 21 века вечный двигатель - это всего лишь научный проект.

Начало истории интереса к понятию вечный двигатель можно просдедить уже в греческой философии. Древние греки были буквально очарованы кругом и считали, что по круговым траекториям движутся как небесные тела так и человеческие души. Однако небесные тела движутся по идеальным окружностям и потому движение их вечно, а человек не способен «проследить начало и конец своей дороги» и тем самым осужден на смерть. О небесных телах, движение которых было бы действительно круговым, Аристотель (384 - 322 до н.э., величайший философ античной Греции, ученик Платона, воспитатель Александра Македонского) говорил, что они не могут быть ни тяжелыми, ни легкими, так как эти тела «не способны приближаться к центру или удаляться от него естественным или вынужденным образом». Это заключение привело философа к главному выводу, что движение космоса - это мера всех других движений, так как оно одно является постоянным, неизменным, вечным.

Августин Блаженный Аврелий (354 - 430) христианский теолог и церковный деятель также описывал в своих трудах необычную лампу в храме Венеры, испускающую вечный свет. Пламя ее было мощным и сильным и его не могли загасить дождь и ветер, несмотря на то, что лампу эту никогда не заправляли маслом. Данное устройство по описанию можно также считать своего рода вечным двигателем, так как действие - вечный свет - обладало неограниченными во времени постоянными характеристиками. В летаписях также есть информацию о том, что в 1345 г. на могиле дочери Цицерона (известного древнеримского правителя, философа) Туллии был найден похожий светильник и дегенды утверждают, что он испускал свет без перерыва около полторы тысячи лет.

Однако самое первое упоминание о вечном двигателе датируется примерно 1150 г.. Индийский поэт, математик и астроном Бхаскара описывает в своем стихотворении необычное колесо с прикрепленными наискось по ободу длинными, узкими сосудами, наполовину заполненными ртутью. Ученый обосновывает принцип действия устройства на различии различии моментов сил тяжести, создаваемых жидкостью, перемещавшейся в сосудах, помещенных на окружности колеса.

Уже примерно с 1200 г. проекты вечных двигателей появляются в арабских летаписях. Несмотря на то, что арабские инженеры использовали собственные комбинациями основных конструктивных элементов, главной частью их устройств оставалось большое колесо, вращавшееся вокруг горизонтальной оси и принцип действия был сходен с работой индийского ученого.

В Европе первые чертежи вечных двигателей появляются одновременно с введением в обиход арабских (по своему происхождению индийских) цифр, т.е. в начале XIII века. Первым европейским автором идеи вечного двигателя считается средневековый французский архитектор и инженер Вийяр д"Оннекур, известный как строитель кафедральных соборов и создатель целого ряда интересных машин и механизмов. Несмотря на то, что по принципу действия машина Вийяра сходна со схемами, предложенными арабскими учеными ранее, отличие заключается в том, что вместо сосудов со ртутью или сочлененных деревянных рычагов Вийяр размещает по периметру своего колеса 7 небольших молоточков. Как строитель соборов, он не мог не отметить на их башнях конструкцию из барабанов с прикрепленными к ним молоточками, которая постепенно заменяла в Европе колокола. Именно принцип действия таких молоточков и колебания барабанов при откидывании грузов навели Вийяра на мысль об использовании аналогичных железных молоточков, установив их по окружности колеса своего вечного двигателя.

Французский ученый Пьер де Марикур, занимавшийся в то время опытами с магнетизмом и исследованием свойств магнитов,через четверть века после появления проекта Вийяра, предложил иную схему вечного двигателя, основанную на использованиив то время практически не известных магнитных сил. Принципиальная схема его вечного двигателя напоминала скорее схему вечного космического движения. Возникновение магнитных сил Пьер де Марикур объяснял божественным вмешательством и потому источниками этих сил считал «небесные полюса». Однако он не отрицал того обстоятельства, что магнитные силы всегда проявляют себя там, где поблизости присутствует магнитный железняк, поэтому эту взаимосвязь Пьер де Марикур объяснял тем, что данный минерал управляется тайными небесными силами и воплощает в себе все те мистические силы и возможности, которые помогают ему осуществлять в наших земных условиях непрерывное круговое движение.

Знаменитые инженеры эпохи возраждения, среди которых были знаменитые Мариано ди Жакопо, Франческо ди Мартини и Леонардо да Винчи, также проявляли интерес к проблеме вечного двигателя, однако не один проект не был подтвержден на практике. В 17 веке некий Иоганн Эрнст Элиас Бесслер утверждал, что изобрел вечный двигатель и готов продать идею за 2 000 000 талеров. Свои слова он подтверждал публичными демонстрациями работающих прототипов. Самая впечатляющая демонстрация изобретения Бесслера произошла 17 ноября 1717 года. Вечный двигатель с диаметром вала больше 3,5 м был приведен в действие. В этот же день комната, в которой он находился, была заперта, и открыли ее только 4 января 1718 года. Двигатель все еще работал: колесо крутилось с той же скоростью, что и полтора месяца назад. Репутацию изобретателя подмочила служанка, заявив, чтоб ученый обманывает обывателей. после этого скандала интерес к изобретениям Бесслера утратили абсолютно все и ученый умер в нищите, но все чертежи и прототипы он перед этим уничтожил. На данный момент принципы действия двигателей Бесслера точно не известны.

И в 1775 г. Парижская академия наук - наивысший в ту пору научный трибунал Западной Европы - выступила против безосновательной веры в возможность создания вечного двигателя и приняла решение не рассматривать больше заявки на патентование данного устройства.

Таким образом, не смотря на появление все новых и новых невероятных, но не подтвержающих себя в реальной жизни, проектов вечного двигателя, он пока остается в человеческих представлениях лишь бесплодной идеей и свидетельством как тщетных усилий многочисленных ученых и инженеров разных эпох, так и их невероятной изобретательности...

Сядьте в лодку с грузом в виде большого камня, возьмите камень, с силой отбросьте его от кормы, - и лодка поплывет вперед. Это и будет простейшая модель принципа работы ракетного двигателя. Средство передвижения, на котором он установлен, содержит в себе и источник энергии, и рабочее тело.


Ракетные двигатели: факты


Ракетный двигатель работает до тех пор, пока в его камеру сгорания поступает рабочее тело – топливо. Если оно жидкое, то состоит из двух частей: горючего (хорошо горящего) и окислителя (повышающего температуру горения). Чем больше температура, тем сильнее вырываются газы из сопла, тем больше сила, увеличивающая скорость ракеты.


Ракетные двигатели: факты

Топливо бывает и твердым. Тогда оно запрессовывается в емкость внутри корпуса ракеты, служащую одновременно и камерой сгорания. Твердотопливные двигатели проще, надежнее, дешевле, легче транспортируются, дольше хранятся. Но энергетически они слабее, чем жидкостные.

Из применяющихся в настоящее время жидких ракетных топлив наибольшую энергетику дает пара «водород + кислород». Минус: чтобы хранить компоненты в жидком виде, нужны мощные низкотемпературные установки. Плюс: при сгорании этого топлива образуется водяной пар, так что водородно-кислородные двигатели экологически чистые. Мощнее них теоретически только двигатели со фтором в качестве окислителя, но фтор – вещество крайне агрессивное.

На паре «водород + кислород» работали самые мощные ракетные двигатели: РД-170 (СССР) для ракеты «Энергия» и F-1 (США) для ракеты «Сатурн-5». Три маршевых жидкостных двигателя системы «Спейс Шаттл» также работали на водороде и кислороде, но их тяги все равно не хватало, чтобы оторвать сверхтяжелый носитель от земли, - пришлось для разгона использовать твердотопливные ускорители.

Меньше по энергетике, но проще в хранении и использовании топливная пара «керосин + кислород». Двигатели на этом топливе вывели на орбиту первый спутник, отправили в полет Юрия Гагарина. По сей день, практически без изменений, они продолжают доставлять на Международную космическую станцию пилотируемые «Союзы ТМА» с экипажами и автоматические «Прогрессы М» с топливом и грузами.

Топливную пару «несимметричный диметилгидразин + азотный тетраоксид» можно хранить при обычной температуре, а при смешивании она сама воспламеняется. Но это топливо, носящее имя гептил, очень ядовито. Уже которое десятилетие оно применяется на российских ракетах серии «Протон», одних из самых надежных. Тем не менее, каждая авария, сопровождающаяся выбросом гептила, превращается в головную боль для ракетчиков.

Ракетные двигатели единственные из существующих помогли человечеству сначала преодолеть притяжение Земли, затем отправить автоматические зонды к планетам Солнечной системы, а четыре из них – и прочь от Солнца, в межзвездное плавание.

Существуют еще ядерные, электрические и плазменные ракетные двигатели, но они либо не вышли из стадии проектирования, либо только начинают осваиваться, либо неприменимы при взлете и посадке. Во втором десятилетии XXI века подавляющее большинство ракетных двигателей – химические. И предел их совершенства практически достигнут.

Теоретически описаны еще фотонные двигатели, использующие энергию истечения квантов света. Но пока еще нет даже намеков на создание материалов, способных выдержать звездную температуру аннигиляции. А экспедиция к ближайшей звезде на фотонном звездолете вернется домой не ранее чем через десять лет. Нужны двигатели на ином принципе, чем реактивная тяга…

Двигатель типичного автомобиля имеет мощность 100-200 л. с. или 70-150 кВт. На самые мощные спортивные автомобили ставят двигатели мощностью более 1000 л. с. А каковы пределы мощности современных двигателей, какие двигатели самые мощные и где они используются? Об этом — в данном посте.

1) Самый мощные двигатели внутреннего сгорания (дизельные) выпускает фирма Wartsila. Используются такие двигатели на кораблях, а их мощность достигает почти 110 тысяч л. с. или 80 мВт (миллионов Ватт).

Wartsila — Sulzer — RTA96-C

2) Весьма мощные двигатели — это паровые турбины, которые используются на АЭС. В настоящий момент мощность самых крупных из таких турбин превышает 1700 мВт.

Монтаж новой мощной турбины для Нововоронежской АЭС

3) Но самые мощные двигатели — это те, которые используются в космических ракетах. Правда, основной характеристикой ракетных двигателей является не мощность, а тяга, которая измеряется в килограммах. Но мощность такого двигателя тоже можно посчитать, и она достигает невероятных значений. Так, мощность ракетного двигателя рд-170 составляет около 27 гВт (т. е. 27 миллиардов Ватт)! Для достижения такой гигантской мощности двигатель сжигает 2,5 тонны топлива в секунду.