Виды защит от короткого замыкания. Электрическая защита асинхронных электродвигателей

Самым распространенным видом электродвигателей бесспорно можно назвать трёхфазные электродвигатели переменного тока, напряжение которых составляет до 500 В при мощностях от 0,05 до 350 - 400 кВт.

Так как требуется обеспечить бесперебойное и надежное функционирование электродвигателей, то наибольшее внимание в первую очередь следует уделить выбору электродвигателей по режиму работы, номинальной мощности и форме исполнения. Нужно не забывать о том, что немалое значение имеет соблюдение требований и необходимых правил во время разработки принципиальной электрической схемы, подборе пускорегулирующей аппаратуры, кабелей и проводов, эксплуатации и монтаже электропривода.

Работа электродвигателей в аварийных режимах

Как известно, даже в случае, если электроприводы спроектированы в соответствии со всеми нормами и эксплуатируются с соблюдением всех правил, то все равно при их работе всегда остается пусть небольшая, но все-таки вероятность появления аварийных режимов или режимов, которые характеризуются ненормальной работой для двигателей и другого электрооборудования.

Среди различных аварийных режимов можно перечислить следующие:

1. Короткие замыкания, которые в свою очередь делятся на:

  • короткие замыкания, которые происходят в обмотках электродвигателя. Они могут быть однофазными и многофазными, а именно двухфазными и трехфазными;
  • многофазные короткие замыкания, которые происходят в выводной коробке электродвигателя и во внешней силовой цепи (например, в ящиках сопротивлений, на контактах коммутационных аппаратов, в проводах и кабелях);
  • короткие замыкания фазы на нулевой провод или корпус во внешней цепи (в электросетях с заземленной нейтралью) или внутри двигателя;
  • короткие замыкания, возникающие в цепи управления;
  • короткие замыкания, возникающие в обмотке двигателя между витками. Этот тип замыканий часто называют витковыми замыканиями.

Короткие замыкания, возникающие в электроустановках, считаются самым опасным типом аварийных режимов из всех существующих. Как правило, чаще всего они появляются по причине перекрытия изоляции или пробоя. Токи короткого замыкания могут достичь таких амплитуд, которые в десятки и сотни раз превышают значения токов при нормальном режиме работы. Тепловое воздействие и динамические усилия, вызванные токами короткого замыкания, которым подвергаются токоведущие части, способны вывести из строя всю электроустановку целиком.

2. тепловые перегрузки электродвигателя, которые появляются из-за того, что по его обмоткам происходит прохождение повышенных токов. Это может происходить в следующих ситуациях:

  • когда по различным технологическим причинам происходят перегрузки рабочего механизма;
  • когда имеют место быть при застопоривании или, наоборот, пуске двигателя под нагрузкой особо тяжелые условия;
  • когда случается длительное понижение напряжения сети;
  • когда произошло выпадение одной из фаз внешней силовой цепи;
  • когда в обмотке электродвигателя случился обрыв провода;
  • когда имели место быть механические повреждения в рабочем механизме или в самом двигателе;
  • когда по причине ухудшения условий охлаждения двигателя произошли тепловые перегрузки.

Тепловые перегрузки отрицательно сказываются на работе электродвигателя. Главной причиной этого является то, что они вызывают ускоренное разрушение и старение изоляции двигателя, что в свою очередь влечет частое возникновение коротких замыканий. То есть все это приводит к серьезным авариям и слишком быстрому выходу двигателя из строя.

Виды защиты электродвигателей асинхронного типа

Для защиты электродвигателей от различных повреждений, возникающих во время работы двигателя в условиях, отличных от нормальных, разрабатываются всевозможные средства защиты. Один из принципов, применяемый в таких средствах защиты, предусматривает своевременное отключение неисправного двигателя от сети, ограничивая, тем самым, или полностью предотвращая развитие аварии.

Основным и самым действенным средством бесспорно считается электрическая защита двигателей, которая соответствуем требованиям ПУЭ (нормативный документ, «Правила устройства электроустановок»).

Если за основу классификации взять характер ненормальных режимов работы и повреждений, которые могут возникнуть, то можно назвать несколько основных наиболее часто встречающихся типов электрозащиты для двигателей асинхронного типа.

Защита электродвигателей асинхронного типа от коротких замыканий

Когда в главной силовой цепи электродвигателя или в цепи управления токов появляется аварийный режим короткого замыкания, то происходит отключение двигателя. В этом и заключается защита от короткого замыкания.

Срабатывание всех аппаратов, которые используются для осуществления защиты электродвигателей асинхронного типа от коротких замыканий, происходит практически мгновенно, без задержки во времени. К таким аппаратам относятся, например, предохранители плавкие, реле электромагнитные, выключатели автоматические с расцепителем электромагнитного типа.

Защита электродвигателей асинхронного типа от перегрузок

Благодаря наличию защиты от перегрузки двигатель предохраняется от чрезмерного перегрева, возникающего, в частности, при относительно малых по величине, но растянутых во времени тепловых перегрузках. Защиту от перегрузки нужно использовать только для электродвигателей не всех рабочих механизмов, а только тех, у которых возможны ненормальные скачки нагрузки в случае нарушения стандартного рабочего процесса.

Аппараты, которые разработаны с целью защитить сеть от перегрузки, например, электромагнитные реле, температурные и тепловые реле, автоматические выключатели с часовым механизмом или с тепловым расцепителем, в случае возникновения перегрузки способствуют отключению двигателя. При этом такое отключение происходит с определенной конкретной выдержкой времени. Выдержка прямо пропорционально зависит от величины перегрузки. Иными словами, чем больше перегрузка, тем меньше выдержка, и наоборот. Иногда даже происходит мгновенное отключение, это происходит при существенных перегрузках.

Защита электродвигателей асинхронного типа от понижения уровня напряжения или его исчезновения

Защиту от понижения уровня напряжения или его исчезновения также часто называют нулевой защитой. Выполняемая с помощью нескольких (или одного) электромагнитных аппаратов, защита подобного рода отключает электродвигатель при снижении уровня напряжения сети ниже минимально допустимого (возможно установить требуемый уровень минимально допустимого напряжения самостоятельно) значения или при перебоях напряжения питания, а также защищает электродвигатель от самопроизвольного включения после обеспечения допустимого напряжения в сети или устранения перерыва питания.

Для режима работы электродвигателей асинхронного типа на двух фазах также существует защита. Срабатывая, она отключает двигатель, тем самым защищая его от «опрокидывания» (остановка под током из-за понижения момента, развиваемого двигателем, в случае обрыва линий электропитания в одной из фаз главной цепи) и от перегрева.

Электромагнитные и тепловые реле применяются в качестве аппаратов защиты двигателей асинхронного типа. При использовании электромагнитного реле защита может не иметь выдержки времени.

Другие виды электрической защиты электродвигателей асинхронного типа

Не менее эффективные, но реже используемые средства защиты также существуют. Они применяются для защиты от однофазных замыканий на землю в IT сетях (у которых нейтраль изолирована), от повышения уровня напряжения, от увеличения скорости вращения привода и т.п.

Электрические аппараты, применяемые для защиты электродвигателей

В зависимости от функциональной сложности аппараты для электрической защиты электродвигателей асинхронного типа могут применяться для предохранения от одного или нескольких одновременно типов угроз. Защиту от коротких замыканий или перегрузок обеспечивают различные автоматические выключатели. Бывают аппараты защиты однократного или многократного действия. К первым относятся, например, плавкие предохранители. Их недостатком можно считать то, что после выполнения своей функции, такие средства защиты подлежат замене и не могут использоваться повторно. Более подходящими могут оказаться перезаряжаемые средства защиты однократного действия. Что касается аппаратов многократного действия, они отличаются способом возврата в состояния готовности на два типа: с ручным возвратом и автоматическим. Примером таких устройств служат тепловые и электромагнитные реле.

Выбор вида электрической защиты электродвигателей асинхронного типа

Для каждого электродвигателя асинхронного типа необходимо выбирать подходящий ему вид электрической защиты. Нужно учитывать условия работы, степень важности привода, его мощность и порядок обслуживания электродвигателя в целом (наличие закрепленного за двигателем сервис-инженера). Может быть выбран как один, так и сразу несколько видов защиты электродвигателей.

Хорошая защита - это та, которая в итоге окажется надежной и простой в эксплуатации. Для грамотного подбора вариантов защиты необходимо провести аудит электрооборудования. Особенное внимание следует уделить данным, касающимся аварийности оборудования в мастерских, на строительных площадках, в цехах и т.д. В результате подобного анализа будет выявлено множество нарушений нормальной работы технологического оборудования и электродвигателей, что позволит подобрать наиболее соответствующее ситуации средство электрической защиты двигателя.

Защита электродвигателей асинхронного типа от коротких замыканий обязательно должна быть предусмотрена вне зависимости от его характеристик (напряжения и мощности). В данном случае защиту нужно организовать комплексным путем в два приема. В одном случае будет необходимо обеспечивать защиту при значениях тока меньших, чем значения пусковых токов. Это подходит в некоторых случаях возникновения коротких замыканий, например замыкания на корпус внутри двигателя или при витковых замыканиях. Во втором случае защиту нужно отстроить от пусковых и тормозных токов двигателя, которые могут в 5—10 раз превышать его номинальный ток

Наиболее доступные и функционально простые средства защиты не позволят одновременного выполнения этих приемов. Поэтому защита с применением подобного рода аппаратов всегда строится на основании сознательного допущения, что при возникновении вышеуказанных повреждений в двигателе, он отключится не мгновенно, а постепенно, причем при условии дальнейшего развития подобных повреждений, когда ток, потребляемый двигателем из сети, возрастет многократно.

Все аппараты электрической защиты двигателей должны быть тщательным образом отрегулированы и правильно подобраны с учетом всех особенностей в каждом конкретном случае. Не допускается, чтобы средства защиты выдавали ложное срабатывание.

Все существующие эксплуатируемые или вновь сооружаемые электрические сети должны быть обеспечены необходимыми и достаточными средствами защиты, прежде всего, от поражения электрическим током людей, работающих с этими сетями, участков цепей и электрооборудования от токов перегрузки, токов короткого замыкания, пиковых токов. Эти токи могут привести к повреждению как самих сетей, так и электроприборов, работающих в этих сетях.

Каждая трансформаторная подстанция, каждая воздушная линия, каждая кабельная линия и распределительные внутридомовые сети, каждый электроприёмник имеют аппараты защиты, обеспечивающие их бесперебойную и надежную работу.

Таких аппаратов на данный момент в мире имеется огромный выбор. Их можно подобрать по типу, по способу подключения, по параметрам защиты. Аппараты защиты электрооборудования и электрических сетей очень обширная группа и включает в себя такие аппараты как: плавкие вставки (предохранители), автоматические выключатели, разнообразные реле (токовые, тепловые, напряжения и т. п.).

Плавкие предохранители защищают участок цепи от токовых перегрузок и коротких замыканий. Разделяются на одноразовые предохранители и предохранители со сменными вставками. Используются и в промышленности и в быту. Существуют предохранители работающие на напряжении до 1кВ и так же высоковольтные предохранители установленные, работающие на напряжении выше 1000В (например, плавкие предохранители на трансформаторах собственных нужд подстанций 6/0,4 кВ). Удобство в эксплуатации, простота конструкции и легкость при замене обеспечили предохранителям очень большую распространенность.

Подробнее про плавкие предохранители и их использование для защиты электроустановок смотрите здесь:

Играют ту же роль, что и предохранители. Только по сравнению с ними имеют более сложную конструкцию. Но при этом пользоваться автоматическими выключателями гораздо удобнее. В случае возникновении, например, короткого замыкания в сети в следствии старения изоляции, автоматический выключатель отключит от питания повреждённый участок. При этом сам легко восстанавливается, не требует замены на новый и после проведения ремонтных работ будет снова защищать свой участок сети. Так же пользоваться выключателями удобно при проведении каких либо регламентных ремонтных работ.



Производятся автоматические выключатели с широким спектром номинальных токов. Что позволяет подобрать нужный практически под любую задачу. Работают выключатели на напряжении до 1 кВ и на напряжении свыше 1кВ (высоковольтные выключатели).

Высоковольтные выключатели, для обеспечения чёткого расцепления контактов и предотвращения появления дуги производятся вакуумными, наполненными инертным газом или маслонаполненными.

В отличии от плавких предохранителей автоматические выключатели производятся как для однофазных так и для трехфазных сетей. То есть существуют одно-, двух-, трех-, четырехполюсные выключатели контролирующие три фазы трехфазной сети.

Например, при появлении короткого замыкания на землю одной из жил питающего кабеля электродвигателя автоматический выключатель отключит питание на всех трех, а не на одной поврежденной. Так как после исчезновения одной фазы электродвигатель продолжил бы работу на двух. Что не допустимо, так как является аварийным режимом работы и может привести к преждевременному выходу его из строя. Автоматические выключатели производятся для работы с постоянным и переменным напряжением.

Подробнее про автоматические выключатели смотрите здесь:

Про выключатели на напряжение выше 1000В:


Так же для защиты электрооборудования и электрических сетей разработано множество разнообразных реле. Под каждую задачу можно подобрать необходимое реле.

Тепловое реле - самый распространённый тип защиты электродвигателей, нагревателей, любых силовых приборов от токов перегрузки. Принцип его действия основан на возможности электрического тока нагревать проводник, по которому он протекает. Основная часть теплового реле – . Которая при нагревании изгибается и тем самым разрывает контакт. Нагрев пластины происходит при превышении током его допустимого значения.

Токовые реле , контролирующие величину тока в сети, реле напряжения , реагирующие на изменения напряжения питания, реле дифференциального тока , срабатывающие при возникновения тока утечки.

Как правило такие токи утечки весьма малы, и автоматические выключатели совместно с предохранителями на них не реагируют, но могут вызвать смертельное поражение человека при контакте его с корпусом неисправного прибора. При большом количестве электроприёмников требующих подключения через дифференциальное реле, для уменьшения габаритов силового щита, питающего эти электроприёмники, используют комбинированные автоматы.

Сочетающие в себе устройства автоматического выключателя и дифференциального реле (автоматы дифференциальной защиты или дифавтоматы). Часто использование таких комбинированных защитных устройств бывает весьма актуально. При этом снижаются габариты силового шкафа, облегчается монтаж и следовательно уменьшаются затраты на установку.

Электрическая проводка несет в наши квартиры и дома не только свет, тепло и уют, но и опасность. Этой опасностью может быть как поражение электрическим током, так и возникновение пожара. Более всего возникновению неисправностей подвержена старая проводка, которая устанавливалась в наших домах еще в соответствии со старыми нормами, когда электропроводка в квартире и в доме выполнялась с расчетной нагрузкой всего лишь в 1-1,5 кВт. Сейчас же столько потребляет обычныйт электрический чайник. А ведь в каждой квартире и частном доме есть еще стиральная машина, пылесос, электроводонагреватель и т.д. Поэтому наша электропроводка испытывает постоянную повышенную нагрузку, что представляет реальнейшую опасность как для человека, так и для его жилища.
Стоит сказать, что в девяностые годы для электрических сетей и электрического оборудования были введены новые нормы по безопасности и в ПУЭ (Правилах устройства электроустановок) были внесены некоторые изменения. Одним из главных изменений среди них стало то, что электропроводка в два провода была заменена проводкой состоящей из трех проводов, и теперь к конечному потребителю должны подводиться фаза, нулевой рабочий и заземляющий провод. С 2001 года внесены в ПУЭ изменение по материалу жил кабелей и проводов. Питающие и распределительные сети в квартирах можно выполнять только кабелями и проводами с медными жилами, т.е. алюминиевые провода запрещены.
Новая электропроводка способна отвечать значительно возросшим к ней требованиям по электро- и пожаробезопасности.
На сегодняшний день основная причина возникновения пожара в квартирах и частных домах (без учета пьянства) - это несоответствие допустимой нагрузки на электрическую сеть и потребляемой мощности электробытовой техники и электрооборудования. Другими словами - электрические провода, защитное оборудование, электроустановочные приборы не рассчитаны на наши электроприборы, которые мы включаем в сеть. В советские времена в квартирах и домах монтировалась проводка, которая была рассчитана на ток в 6 Ампер! Это всего-навсего 1,3 кВт пропускной мощности. В то же время электрическая проводка в современных домах рассчитана на 10/15А /220 В, гже номинальный максимальный ток нагрузки в 10 А, при напряжении в сети в 220 В, при этом проводка способна выдержать кратковременный ток перегрузки до 15 А. Необходимо отметить, что на такой коэффициент перегрузки, в свое время, была рассчитана наши старая электропроводка и арматура (автоматы, предохранители, выключатели и т.д.). Именно из-за этого наша старая электропроводка в квартире хотя и с трудом, но все же выдерживает возросшие на нее токовые нагрузки. От всех неприятностей и необходима защита электропроводки в квартире и доме .

Защита электрических проводов и кабелей в электросети

Основная часть бытовых электроприборов, да и всех энергоприемников работают от переменного тока напряжением 220 или 380 вольт. Все функционирование электропроводки основывается на трех проводах: фазном, нулевом рабочем проводе и проводе заземления. Эти провода функционально неразрывны друг от друга в системах электропитания, но вместе с тем на всем протяжении электропроводки они должны быть полностью изолированы друг от друга. Фазный провод, нулевой провод и провод заземления должны быть изолированы не только друг от друга, но и от любой возможности прикосновения к ним.
Нарушение изоляции токоведущих проводов и возможность прикосновения к ним относятся к аварийному режиму работы электрической сети. Чтобы защитить человека, от поражения электрическим током и саму электрическую сеть, существует много устройств защиты. Все устройства защиты разработаны для защиты от определенной неисправности электросети. В наших домах, как правило, защита электропроводки выполнена автоматическими выключателями (автоматы защиты).

Автомат защиты - это электромеханическое устройство, которое обеспечивает протекание тока в нормальном режиме и автоматическом отключении тока (напряжения) при аварийных ситуациях: коротком замыкании и перегрузке.
Кроме защиты от аварийных ситуаций, автоматы защиты служат для оперативного выключения и включения питания для электрических сетей. Автоматы защиты - это еще и выключатели отдельных линий электрической сети или электрической сети в целом.
При перегрузке или коротком замыкании автоматы защиты отключают (обесточивают) электрическую сеть в которой они установлены. Для этого в них встроены специальные устройства-расцепители. От перегрузки защищает тепловой расцепитесь. От короткого замыкания - электромагнитный расцепитесь.

Короткое замыкание

Короткое замыкание - это аварийное соединение разных функциональных проводов электропроводки. В квартирах и домах это механическое касание фазного (L) и нулевого рабочего (N) проводников или фазного провода (L) и провода заземления (PE) электрической сети, находящейся под напряжением.
В электросетях с трехфазным электропитанием напряжением 380 вольт, коротким замыканием называется касание любого из трех фазных проводов (L1,L2,L3) между собой или касание любого фазного провода и нулевого рабочего провода (N) или фазного провода и защитного проводника (PE).
Короткое замыкание проводов может привести к выходу из строя электропроводки или максимум к пожару. Гораздо опаснее, если ток короткого замыкания пройдет через человека. Это вполне возможно, если вы случайно касаетесь фазного провода под нагрузкой.
Для защиты от короткого замыкания в электрических сетях предназначены автоматы защиты с электромагнитным расцепителем.

Перегрузка в сети

Вся электрическая сеть помещения разбивается на группы. Каждая группа рассчитывается на определенное количество потребителей. Например: если это квартира, то могут быть отдельные группы на освещение, розетки на кухне, розетки в комнатах и т.д. Если электропроводка делается самостоятельно, то количество групп рассчитывается в зависимости от потребностей и для каждого отдельно случая может быть разная. В стандартных квартирах количество групп соответствует проекту квартиры. Для каждой группы рассчитывается максимально возможная нагрузка. В зависимости от нагрузки выбирается питающий кабель для этой группы.
Увеличение расчетной нагрузки вызывает перегрузку электрической сети. Возникает перегрузка, если в розетки одной группы, например, непродуманно включить все бытовые приборы. При увеличении расчетной нагрузки электрический кабель начинает греться. При длительной перегрузке изоляция начнет плавиться, что может привести к пожару или выгоранию проводки.
Чтобы защитить электропроводку от перегрузки устанавливаются автоматы защиты с встроенным тепловым расцепителем (биметаллическая пластина).
Автоматы защиты устанавливаются в щитки распределительные (этажные электрощитки).
Наряду с тем, что замена электропроводки в квартире стала выполняться из трехжильного провода, появляются и другие новшества. Так, например, вместо обычных плавких предохранителей известных в быту под названием "пробки" и предохранителей с термобиметаллом, появились УЗО - устройства защитного отключения. УЗО не только отсекают питание в случае перегрузки электропроводки в квартирах или ее короткого замыкания, но еще и отсекают электропитание, срабатывая в случае разрушения изоляции наших бытовых электроприборов или (что очень важно) в результате неосторожного прикосновения человека к оголившемуся проводу, который находится под напряжением.

УЗО (устройства защитного отключения) защищает электропроводку в квартирах не только от тока перегрузки и от короткого замыкания, но еще защищает и от тока утечки. Для того, чтобы можно было по достоинству оценить появление в электропроводке в квартирах УЗО, необходимо получить некоторое представление о токе утечки. Обычно если электропроводка в квартире работает нормально и электропотребители исправны, то ток, протекающий в обоих проводах одинаковый. Как только человек коснется оголенного провода, по которому идет ток, ток пойдет через тело человека. В этом случае баланс токов в проводах, который «отслеживает» УЗО нарушится и УЗО разомкнет электрическую цепь сети. Произойдет это достаточно быстро, при значении тока утечки, еще не столь опасном для человеческого организма.

Из сказанного выше следует - безопасность старой двухжильной электропроводки в квартирах можно повысить путем установки устройства защитного отключения (УЗО). Но необходимо помнить, что хотя УЗО и предназначены именно для защиты от поражения человека электрическим током, поскольку срабатывание у них происходит при утечках тока, которые по своей величине значительно меньше, чем токи предохранителей (а для бытовых предохранителей это 2 ампера и более, что во много раз превышает значение смертельное для человеческого организма), тем не менее, установка этого защитного устройства является дополнительным защитным мероприятием (не выполняя монтаж проводки), а не заменой защиты от сверхтоков при помощи предохранителей. Также стоит помнить, что выбор защитных мер электропроводки и выбор электропроводки следует выполнять специалистам.

Страница 1 из 3

1. Основные понятия РЗ (РЗ и А)

  • Оперативный ток
  • Основные и вспомогательные реле.
  • Виды защиты.
  • Современные устройства и аппараты защиты.
  • Защита отдельных установок.
  • Автоматика в системах электроснабжения.

Основные понятия релейной защиты (Р З). РЗ - называют специальные средства и устройства для защиты, выполняемые с помощью реле, процессоров, блоков и других. аппаратов, и предназначенные для отключения силовых выключателей при напряжении свыше 1000 В или автоматических выключателей при напряжении до 1000 В. Более часто термин РЕЛЕЙНАЯ ЗАЩИТА используется в установках и сетях высокого напряжения. К системам автоматики в настоящей работе отнесены устройства АПВ, АВР, АЧР, АРТ.

Р.З. - основное средство защиты линий, трансформаторов, генераторов, двигателей от аварийных и ненормальных режимов.
Требования к РЗ. К релейной защите предъявляются следующие требования:
-селективность (избирательность), т.е. способность защиты самостоятельно определять поврежденный участок сети и отключать только этот участок,
-быстродействие,
-надежность действия,
-чувствительность (т.е. способность отключать поврежденные участки на начальной стадии повреждения)
-простота схемы.
Контролируемые параметры Р.З. Устройства РЗ могут контролировать следующие параметры: ток, напряжение, мощность, температуру, время, направление и скорость изменения контролируемой величины.
Функции релейной защиты . Устройства РЗ могут выполнять следующие функции:

  • защита от К.З междуфазных,
  • защита от замыканий на землю, в т. ч. 2х-3х и однофазных
  • защита от минимального напряжения;
  • защита от внутренних повреждений в обмотках двигателей, генераторов и трансформаторов.
  • защита от асинхронного режима работы синхронных двигателей.
  • защита от обрывов в роторной цепи мощных двигателей.
  • защита от затянувшегося пуска
  • дифференциальная защита (продольная и поперечная) крупных машин и линий.

Оперативный ток. Оперативный ток предназначен для питания цепей управления, защиты, сигнализации и т.п. Оперативным током питаются приводы всех коммутационных аппаратов подстанций. Оперативный ток может быть переменным и постоянным, величина напряжения обычно составляет 110-220 В. Оперативный ток на ответственных подстанциях и установках должен быть всегда, даже при потере питания главных цепей, поэтому оперативный ток должен иметь независимые источники питания, в качестве которых могут использоваться: аккумуляторные установки, выпрямители, генераторы, специальные блоки питания.
Элементная база РЗ. В качестве основных элементов релейной защиты применяются реле, в том числе электромагнитного или других принципов действия, а также полупроводниковые и микроэлектронные приборы и блоки.

Основные реле. В схемах РЗиА применяется много типов различных реле, а в последние годы - специальных блоков и процессоров, объединяемых в локальную компьютерную сеть. В качестве основных применяются реле тока, напряжения, мощности, частоты, дифференциальные реле и блоки дифференциальной защиты.

Реле тока. Наиболее часто используются электромагнитные реле РТ -40 и индукционные типа РТ-80. Это высокочувствительные устройства, реагирующие на изменение тока, и могут защищать от перегрузок и от КЗ.

  • Подвижный контакт
  • сердечник
  • перемычка
  • обмотка
  • контактная часть
  • пружина
  • шкала уставок
  • регулятор уставки срабатывания

10-гаситель вибрации

Рисунок 1 - Конструкция реле тока РТ-40.

Реле РТ-40 - электромагнитное, имеет два сердечника и две обмотки, которые можно включать параллельно или последовательно для удвоения показателей шкалы. Уставка срабатывания регулируется поворотом указателя 9 (изменением натяжения пружины). Пределы уставок у различных модификаций реле этой серии - от 0,5 до 200 А, что позволяет их использовать с различными трансформаторами тока. Выпускаются также реле тока серии ЭТ-520 и другие.
Пример характеристики реле тока: РТ-40/0,2; I сраб. 0,05¸0,1А (последовательное соединение), и 0,1¸0,2А (параллельное соединение), I ном. от 0,4 А до 10 А




Рисунок 2 - Схема устройства реле РТ-80 и характеристика срабатывания реле




Рисунок 3 - Общий вид реле тока РТ-80 (90).

Реле РТ-80 (РТ-90) - реле тока индукционного типа, имеет два независимых элемента- электромагнитный (мгновенного действия) и индукционный (работающий с выдержкой времени). Такая конструкция позволяет применять их в схемах с зависимой и независимой от тока характеристикой срабатывания. Ток срабатывания индукционного элемента-2-10 А, время срабатывания - 0,5-16 с. При токах от 2 до 3-5 номинальных реле работает с выдержкой времени, с зависимым от тока временем срабатывания, при токах более 5- -7 номинальных у реле срабатывает электромагнитный элемент, без выдержки времени, т.е. мгновенно.
Реле напряжения. Электромагнитные высокочувствительные реле без выдержки времени, применяются для контроля величины напряжения. Выпускается единая серия РН-50. Они бывают минимального (РН-54) и максимального напряжения (РН-51, -53, -58), для постоянного и для переменного тока. По принципу действия они аналогичны РТ-40, однако имеют значительно больше витков в обмотках. Диапазон уставок напряжения этих реле от 0,7 до 200 В или 400 В у разных серий.

Высокочувствительные быстродействующие реле. Выпускаются серии РБМ - реле мощности быстродействующее, и РНТ - реле направленного тока. Применяют для дифференциальной защиты трансформаторов, генераторов и других мощных машин. Эти реле - быстродействующие и используют быстронасыщающийся трансформатор БНТ.

Дифференциальные реле применяют для защиты трансформаторов, генераторов, линий. Типы реле: РНТ-565, РБМ-170 (270) и др.

Реле РНТ-565-реле направленного тока (рис. 5) (реле электромагнитное токовое дифференциальное). Состоит из корпуса в котором находятся: реле РТ-40, быстронасыщающийся трансформатор БНТ и резисторы R к и R в. Реле имеет обмотки: Р- рабочая обмотка, В -вторичная обмотка, К1, К2 - короткозамкнутые обмотки, У1, У2-уравнительные обмотки
Настройка реле производится с помощью резисторов Rв и Rк. При этом добиваются, чтобы при включении реле оно становилось нечувствительным к токам намагничивания (к помехам) и к токам небаланса, возникающим в начальный момент КЗ. Это позволяет повысить чувствительность защиты. Все обмотки имеют отдельные выводы (гнезда) для регулирования и настройки.
Дифференциальное реле мощности РБМ используется для контроля изменения направления тока в устройствах направленной токовой защиты. Принцип его действия следующий.



  • магнитопровод, 2- обмотка, включенная последовательно нагрузке, 3- обмотка, включенная параллельно(в цепи напряжения), 4- неподвижный стальной сердечник, 5- алюминиевый ротор,6- подвижные контакты

Рисунок 5 - Устройство и принцип действия реле мощности РБМ

При отклонении от нормального (расчетного) режима магнитные потоки Фт и Фн, создаваемые обмотками тока и напряжения, проходят по магнитопроводу и через сердечник 4 индуцируют в роторе 5 вихревые токи, в результате чего ротор поворачивается на определенный угол. При повороте ротора замыкаются контакты 6. Реле срабатывает только тогда, когда в обмотках 2 или 3 изменяется направление тока.
Вспомогательные реле . Используются для выполнения вспомогателных функций: задержки, размножения сигнала, усиления, сигнализации, контроля положения коммутационных аппаратов. Это - реле времени, промежуточные, сигнальные и другие. Примеры вспомогательных реле: времени РВ-, ЭВ- и др., промежуточные РП-231,232,241, -указательные РУ-21, РЭУ, РС.

Виды защиты электрических сетей и установок

Все основные реле, применяемые в схемах РЗ, включаются через трансформаторы тока или напряжения, поэтому для их питания используются схемы включения вторичных реле. Реле могут действовать на привод силового выключателя непосредственно (прямое воздействие), или через электромагнит отключения (косвенное воздействие). Реле и блоки могут включаться в одну, в две или в три фазы. Защита может срабатывать без выдержки и выдержкой времени. Питание основных реле в основном производится на переменном токе.
В электроустановках и сетях высокого напряжения применяются следующие виды защиты: МТЗ, отсечка, дифференциальная токовая защита, защита минимального и максимального напряжения, нулевая защита, земляная защита и другие.

МТЗ - максимальная токовая защита - защита от перегрузок и коротких замыканий. Она может действовать мгновенно или с выдержкой времени. Применяется для защиты электродвигателей; трансформаторов, воздушных и кабельных ЛЭП. Использует реле РТ-40 или Т-80. Защита может выполняться на одном, на двух или на трех реле, которые соответст


венно включаются в одну, в две, или в три фазы.



Рисунок 6 - Первичное и вторичное реле, прямое воздействие на привод выключателя



Рисунок 7 - Схема включения с косвенным воздействием на привод выключателя и общий вид реле РТ-40

На следующем рисунке показаны некоторые схемы включения реле тока: схема а - первичное реле и прямое воздействие на механизм свободного расцепления (МСР) силового выключателя; схема б - вторичное реле и прямое воздействие реле тока на МСР выключателя; схема в - вторичное реле и косвенное воздействие на привод силового выключателя, постоянный оперативный ток.
Применяются также схемы с независимой от тока характеристикой срабатывания, тогда при срабатывании любого реле оперативный ток подается на обмотку реле времени, которое в свою очередь с выдержкой времени (см. рис.) замыкает свой контакт в цепи электромагнита отключения привода выключателя и указательного реле. Выключатель отключается, сигнальное реле КН также срабатывает и выбрасывает флажок (блинкер).
Существуют и другие схемы - с промежуточными реле на переменном о постоянном оперативном токе и с зависимой характеристикой времени срабатывания.




Рисунок 8 - Схемы действия реле тока
Выбор уставок токов срабатывания МТЗ.
Условия выбора:

  • Защита не должна срабатывать при прохождении максимального рабочего тока нагрузки (при пиковых нагрузках), в том числе защита не должна срабатывать при пуске мощных двигателей,
  • Защита должна гарантированно срабатывать на защищаемом участке при КЗ и иметь коэффициент чувствительности КЧ в конце участка не менее 1,5.

У ячеек КРУВ (КРУРН ) имеется шкала уставок МТЗ в приводе ячейки. На шкале есть шесть делений, которые соответствуют 100%; 140%; 160%;200%; 250%; 300% номинального тока ячейки. Так, для ячейки с IНОМ=50А эти деления соответствуют токам: 50А; 70А; 80А; 100А; 125А; 150А. Если необходим ток уставки , то следует выбрать шестую ступень с Iy=150A.
. Для всех типов КРУ .
Ток срабатывания защиты в первичной цепи можно определить с учетом IНОМ.MAX тока нагрузки в номинальном режиме (например - режим пуска): КЗ = 1,1 - 1,25 - коэффициент запаса:, КС.З.= 2 - 3 - коэффициент самозапуска электродвигателей (после кратковременного отключения); КВЗВ=0,8-0,85 -коэффициент возврата реле

Ток уставки реле (во вторичной цепи) можно определить, если разделить IУ1 на коэффициент трансформации трансформатора тока КТТ.

Если нет никаких данных для расчета токов уставки (срабатывания защиты), то можно ориентировочно принимать для первичной цепи .

Токовая отсечка.
Это МТЗ, выполненная с мгновенным действием или с выдержкой времени. Токовая отсечка (ТО) обычно защищает часть линии, поэтому применяется как дополнительная защита,что дает возможность ускорить отключение повреждений при небольших КЗ. При сочетании ТО с МТЗ получается ступенчатая по времени защита. При этом первая ступень(отсечка) действует мгновенно, а последующие - с выдержкой времени. Выполняется на базе реле тока.
Дифференциальная защита.

Основана на принципе сравнения токов в начале и в конце защищаемого участка, например трансформатора или мощного двигателя. Применяется в сочетании с другими видами защиты электроустановок:
- от внутренних повреждений

Дифференциальная защита может быть продольной и поперечной.

Участок между трансформаторами тока ТА1 и ТА2 является защищаемой зоной. Если ТА1 и ТА2 имеют одинаковые характеристики, то токи во вторичных цепях ТА1 и ТА 2 будут одинаковы как при нормальном режиме, так и при коротком замыкании в точке К1 (за пределами защищаемой зоны) . Обмотки их включены встречно, поэтому разность токов I1 -I2 = 0, поэтому тока в обмотке реле КА не будет и оно не сработает. При К3 внутри защищаемой зоны в точке К2 по обмотке реле КА пройдет ток I1 -I2 ≠ 0 и реле сработает, и выдает импульс на отключение силового выключателя. Дифференциальная защита надежна, высокочувствительна, быстро действует, т.к. отключается только поврежденный участок. К недостаткам относятся следующее: не обеспечивает отключение при внешних К3; требуется устанавливать автотрансформатор АТ для уравнивания тока небаланса (т.к. у трансформаторов тока разные коэффициенты трансформации). Работает на базе реле РНТ - 565 с быстронасыщаюмся трансформаторами.
Поперечная дифференцированная защита.

Применяется для защиты параллельных линий, подключенных к линиям подстанции через общий выключатель. Здесь вторичные обмотки трансформаторов тока подключают встречно, т.е. на разность токов. Используют реле и включабт токовое реле РТ-40 или ЭТ=521 мгновенного действия). Ток, протекающий по реле равен разности токов, т.к. реле включены встречно: Iр.= I1- I2 т.е. разности токов вторичных обмоток транформаторов тока. При нормальной работе Iр=0 или очень мал (т.н. ток небаланса) и реле отстраивается так, чтобы ток был недостаточен для срабатывания. Если на одной из линий будет короткое замыкание, то в обмотке одного из трансформаторов тока ток будет больше, чем у другого и в результате разность токов будет большая и реле сработает и даст импульс на отключение силового выключателя.
Защита минимального и максимального напряжения

Предназначена для защиты электроустановок от увеличения или от уменьшения напряжения. Для этой цели используются специальные высокочувствительные реле напряжения серии РН -50. Они выпускаются для переменного и постоянного тока. Реле напряжения серии РН-50 выпускаются для контроля максимального напряжения (РН-51; РН-53; РН-58) и для контроля минимального напряжения (РН-54). Они срабатывают при повышении или снижении напряжения по отношению к заданной величине.
Таблица 4 - Характеристика реле РН-51(для постоянного тока)

UНОМ,В

UНОМ,В



Реле напряжения включаются через трансформатор напряжения с контролем одной, двух или трех фаз. При уменьшении напряжения в сети до величины уставки реле последнее срабатывает с воздействием на электромагнит отключения силового выключателя.
Рисунок 9 - Схема работы защиты минимального напряжения и общий вид реле РН-51
Таблица 5 - Характеристика реле РН-53 и РН-58


Соединение обмоток

Параллельное

Последовательное

Коэффициент возврата КВЗР

Таблица 6 - Характеристика реле РН-54

Уставка срабатывания, В

Номинальное напряжение, В

Коэффициент возврата КВЗР не выше

Защита от замыканий на землю.
Применяется в сетях напряжением 6¸35 кВ, а они в основном с изолированной нейтралью, с малыми токами замыкания на землю. В таких сетях однофазные замыкания на землю непосредственной опасности не представляют, пока 1-фазное замыкание не перейдет в 2-х фазное и станет опасным для оборудования и персонала.
Существует много схем и способов защиты от замыканий на землю в т.ч. и в карьерных сетях. Принцип их действия основан на применении токовых и направленных устройств, реагирующих на ток, напряжение или мощность нулевой последовательности. Далее этот сигнал передается на устройства, реагирующее на величину нулевой последовательности и действующее на отключение источника. Измерительными органами таких схем являются высокочувствительные реле и блоки: РТЗ-50; -51; РТ-40/02; ЭТД-551, РЗН-3 - реле направленной защиты, ЗЗП-1М - реле мощности.

В качестве датчиков сигналов нулевой последовательности промышленность выпускает трансформаторы тока нулевой последовательности T3, T3P, ТЗЛ, ТФ, ТТНП-2 и

Рисунок 10 - Трансформатор тока нулевой последовательности (ТТНП).

Эти трансформаторы тока предназначены для установки их на кабельных линиях или кабельных вставках. В качестве реагирующих органов токовой защиты применяют реле РТ-40/0,2, РТЗ-50, РТЗ-51, ЭТД-551 и другие, в том числе электронные блоки и процессоры. Так, находят применение датчики тока CSH-120 и CSH-200, компании SCHNEIDER, работающие совместно с цифровыми системами защиты.

Рисунок 11 - Общий вид современных датчиков тока и напряжения фирмы Щшейдер-Электрик

Блок Sepam -2000

Рисунок 12 - Снятие характеристик с помощью выносного пульта


Рисунок 13 - Общий вид ячеек МС- set с встроенными системами защиты Sepam


Современные системы защиты зарубежных производителей. В настоящее время находят применение современные средства и системы защиты на базе микропроцессорной техники. Достоинством таких систем является надежность, быстродействие, возможность автоматического регулирования уставок срабатывания в связи с изменяющимися параметрами сети. Использование цифровых технологий обеспечивает постоянную готовность к работе, простоту управления и исключение ошибок персонала, безопасность, а также, несмотря на большие капитальные затраты, приводит к снижению эксплуатационных затрат. Так, оборудование фирмы Шнейдер Электрик позволяет устанавливать все необходимые виды защит с помощью блоков серии Sepam, в том числе модели 100, 1000,и 2000.

Рисунок 14 - Схема работы реле земляной защиты

Опыт эксплуатации направленных устройств защиты от замыканий на землю в распределительных сетях карьеров показывает, что имеющиеся средства пока не отвечают требованиям эксплуатации электрических сетей. Имеются 10 - 20 процентов ложных случаев срабатывания, так как расположение, длина карьерных сетей постоянно изменяются и возникают переходные процессы при работе большого количества электрических машин. В настоящее время в сетях карьеров применяются реле типа УАКИ, а также проходят испытания различные устройства, использующие новые системы и элементную базу, например: УСЗС- устройство защиты от токов утечки, УСЗ-2;3;3М - работают на принципе сравнения токов высших гармоник, ИЗС - импульсная защита направленная - использует принцип контроля направления электромагнитных волн фаза-земля (волна распространяется от места повреждения). Большинство из них используют ток небаланса, учитываемый трансформаторами нулевой последовательности. Реле РТЗ-51 разработано и выпускается промышленностью взамен реле РТЗ-50 и обладает более стабильными эксплуатационными харак-теристиками.

Реле предназначено для использования совместно с трансформаторами тока нулевой последовательности в качестве органа, реагирующего на ток нулевой последовательности в схемах защит от замыканий на землю генераторов, двигателей и линий с малыми токами замыкания на землю и в других схемах устройств релейной защиты.

Газовая защита .

Выполняется для защиты маслонаполненных трансформаторов от внутренних повреждений (межвитковых КЗ). При К.З. внутри трансформатора начинается усиленное газовыделение и резкое повышение давления, что может привести к выходу из строя трансформатора, в том числе к его разрушению. Газы при этом направляются через реле, установленные в

Рисунок 15 - Схема работы газовой защиты

трубопроводе, соединяющем бак трансформатора с расширителем. Под давлением газа или
потока масла поворачивается чувствительный элемент газового реле и происходит замыкание контактов, далее работает штатная схема с действием на отключение трансформатора. В реле ПГ-22 чувствительным элементом является поплавок. В реле типа РГЗ-61 имеется колба с контактами и ртутью. При повороте колбы контакты замыкаются.
В реле типа РГЧ3 имеется чашечка с лопастью, которая поворачивается от движения потока газа или масла.
Газовая защита обязательна:

  • для трансформаторов мощностью S более 6300 кВА,
  • для трансформаторов мощностью 400 и более кВА внутри цехов;
  • Для трансформаторов мощностью от 1000¸4000 кВА обязательна при отсутствии дифференциальной защиты или МТЗ.




Рисунок 16 - Комплект аппаратуры защиты Sepam

Защита отдельных линий, установок и машин.



Все установки, сети, машины высокого напряжения должны быть обеспечены соответствующими видами защиты, которые выбираются и устанавливаются в соответствии с требованиями ПУЭ.
Рисунок 17 - Вид сборки из реле времени, тока, напряжения, земляной защиты и сигнальных реле.

Защита мощных электродвигателей.

Виды защиты выбираются в зависимости от мощности двигателя.

При мощности до 2000 кВт должны быть:

  • Максимальная защита от КЗ на шпильках
  • Защита от замыканий на землю (корпус)

МТЗ от перегрузок, в т.ч. затянувшегося пуска

  • Защита от потери питания (минимальная, нулевая)
  • Защита от асинхронного режима при Р до 2000 кВт;

Дополнительно при мощности Рот 2000 до 5000 кВт:
- Отсечка с контролем 1 фазы
Дополнительно при мощности более 5000 кВт
- Отсечка в 2х фазах и продольная дифференциальная защита.
Защита КЛ и ВЛ
При напряжении от 6 до 35 кВ:
- от КЗ - максимальная токовая защита, отсечка без выдержки времени

  • от замыканий на землю - земляная с действием на сигнал или на отключение с выдержкой времени
  • от перегрузок МТЗ с зависимой характеристикой срабатывания
  • Дифференциальная поперечная с действием на отключение

Защита трансформаторов ГПП и КТП напряжением выше 6 кВ. Выбирается в зависимости от мощности трансформатора и его типа.

  • от КЗ в обмотках и выводах
  • от замыканий на землю в обмотках и выводах
  • от витковых замыканий в обмотках
  • от внешних КЗ
  • от перегрева магнитопровода и масла
  • от повышения давления
  • от перегрузок
  • от снижения уровня масла

Наиболее часто применяются следующие виды защиты:

  • Продольная дифференциальная мгновенного действия на базе реле РНТ или блоков ДЗТ)
  • Отсечка (если нет ДЗ)
  • МТЗ трехфазная, двух- или трехрелейная на базе реле РТ-40 или РТ-80
  • Газовая на сигнал или отключение.
  • Земляная на базе реле РТЗ-51 или аналогичного.

Защита конденсаторных установок при напряжении 6 - 10 кВ.