Типовые параметры работы инжекторных двигателей ВАЗ. Датчики управления двигателем автомобиля (диагностика)

Датчик температуры мотора

Датчик температуры охлаждающей жидкости - датчик температуры мотора (ДТМ), но выглядит в виде термистора, т. е. полупроводникового резистора, его сопротивление изменяется в зависимости от температуры. Датчик вворачивается в проточный патрубок охлаждающей системы мотора и постоянно присутствует в потоке охлаждающей жидкости. Когда температура жидкости низкая датчик имеет высокое сопротивление (примерно 100 кОм при ~44 °С), а когда температура высокая наоборот - низкое (11-34 Ом при 140 °С). ЭБУ мотора через сопротивление определенной величины подает к датчику стабилизированное напряжение в размере 5 В и при помощи делителя измеряет падение напряжения на приборе. На холодном двигателе оно будет высоким, а когда мотор прогрет - низким. По измеренному снижению напряжения на приборе, блок управления определяет температурный показатель охлаждающей жидкости. Данный показатель влияет на работу множества систем, которыми управляет автоматика.

К примеру, по температуре мотора корректируется состав воздушно-топливной смеси (ВТ-смеси): для холодного мотора смесь должна быть более обогащенной, для прогретого более обедненной. По температуре двигателя также корректируется угол опережения зажигания.

Плохое соединение (обрыв) в цепи датчика охлаждающей жидкости передастся в блок управления как низкая температура мотора. ВТ-смесь при этом сильно обогатиться обогащается, и мотор начинает работать менее экономично, загрязняет при этом окружающую среду. В памяти ЭБУ-Д (в регистраторе неисправностей) будет записан код, в расшифровке имеющий вид «Работа мотора на более богатой ВТ-смеси».

Неисправность датчика температуры жидкости или замыкание в цепи интерпретируется в ЭБУ мотора как перегрев. Система впрыска горючего будет формировать ВТ-смесь, которая переобеднена, и работа мотора станет неустойчивой. В памяти регистратора блока управления запишется код неисправности «Работа мотора на бедной ВТ-смеси».

Подобный датчик охлаждающей жидкости надо проверять в таких случаях, как:

  • негаснущая контрольная лампа «перегрев мотора» (если имеется);
  • обнаружение в регистраторе неисправности соответствующих кодов;
  • повышенный расход топлива, детонация или повышенная концентрации в выхлопных газах СО;
  • затрудненный пуск, неустойчивая работа или остановка мотора на холостом ходу.

Также при тестировании механизмов существует необходимость в использование технической документации для отдельно взятого авто или встроенное в ПО диагностических приборов пути неисправностей, дающие полную картину прошедшей проверки.

Устранения неисправностей и использование S.A.I.S. AUTODATA в поиске.

Перед тем как проверять датчик температуры охлаждающей жидкости стоит убедиться в правильности работы системы охлаждения мотора.

Система охлаждения должна быть корректно заправлена жидкостью «охлаждения». Резервуар расширителя и радиатор должны быть по норме заполнены. Крышку радиатора стоит снимать только на остывшем моторе, иначе охладитель, у которого температура работы более 100 С может причинить вам ожоги. Для простого функционирования датчика управления его механическая часть должна постоянно находиться в охлаждающей жидкости.

Крышка радиатора должна герметично закрываться, иначе в системе могут быть образованы воздушные «карманы» и показания прибора будут искажены.

Состав охладителя должен по всем показателям соответствовать рекомендациям производителя. Зачастую используется смесь 50% антифриза и 50% воды. По теплопроводности такая смесь считается оптимальной.

Вентилятор должен правильно работать, чтобы мотор не перегревался. Если в системе охлаждения присутствует электроконтактный термовыключатель или термостат, то необходимо убедиться в их полной способности к работе.

Диагностика датчиков температуры жидкости при помощи сканера Bosch KTS.

Фирма BOSCH (Германия)- мировой лидер на рынке диагностических датчиков для автомобилей. Применение передовых технологий, сотрудничество с автомобильными концернами, огромный опыт работы, позволило фирме BOSCH создать себе бренд изготовителя качественного и надежного оборудования. Следствием выполненной работы, является системная диагностика ESI и KTS.

Все механизмы состоят из набора необходимых для работы кабелей и аппаратной части мультиплекора. Постоянное развитие ESI позволяет обновлять список диагностируемых блоков управления машиной, что дает возможность с уверенностью браться за работу почти с любой машиной. Итак, на сегодня огромный охват: 65 марок автомобилей, 1350 типов автомобилей, 145 автомобильных систем, около 17000 блоков управления.

Все это оборудование вполне удобно, позволяет быстро освоить все возможности и имеет понятное управление. Нет никаких сомнений в том, что этот продукт является самой универсальной и качественной системной диагностических датчиков.

Протоколы поддерживаемые Bosch KTS540:

  • ISO 15765-4 (OBD)
  • CAN ISO 11898
  • ISO 9141-2 (K/L lines)
  • SAE-J1850 SPC
  • SAE-J1850 DLC
  • Blink-code
  • Low Speed CAN, Middle Speed-, High Speed-, CAN Single Wire

Возможности:

  • Базисные настройки
  • Сброс сервисных интервалов
  • Управление исполнительными механизмами
  • Вывод текущих данных в графическом или цифровом виде
  • Идентификация блоков (№ софта, название фирм производителя, …)
  • Удаление/чтение кодов ошибок и их расшифровка

Сканер отлично подойдет для диагностики опций всех приборов, включая датчик температуры охлаждающей жидкости. Интерфейс этой программы весьма прост и дает обширную информативность для устранения и поиска неисправности системы управления мотором. На дисплей монитора ноутбука или компьютера в составе KTS Bosch, который подключен к диагностическому бортовому разъему, выводятся значения датчика температуры в текущий период.

Датчик положения заслонки дросселя

Датчик положения заслонки дросселя устанавливается на дроссельном патрубке сбоку и связан с дроссельной заслонкой (точнее ее осью). Датчик выглядит в виде трех-выводного потенциометра, на один его вывод подается плюс стабилизированного напряжения 6 В, а другой вывод подразумевает за собой массу. С третьего вывода от ползунка (потенциометра) снимается сигнал для блока управления. Когда при воздействии, на педаль управления заслонка дросселя поворачивается, на выходе датчика напряжение изменяется. Когда заслонка закрыта оно ниже 1 В. Когда заслонка переходит в открытое положение, напряжение на выходе датчика повышается и при полностью открытой заслонке должно быть более чем 5 В. Отслеживая напряжение датчика на выходе, ЭБУ корректирует количество топлива впрыснутого форсунками в зависимости от градуса угла открытия заслонки дросселя. Так в системах питания топлива с электронноуправляемым впрыском выполняется акселерация. В подавляющем большинстве случаев датчик положения заслонки дросселя не требует никакого регулирования, так как ЭБУ воспринимает холостой ход, как начальную отметку. Однако датчики положения заслонки дросселя отдельных производителей все-таки нуждаются в некоторой настройке, которая в таком случае выполняется по методике и спецификации производителя. Эта процедура проверки не очень подходит для диагностики заслонки дросселя с электронным управлением.

Датчик концентрации кислорода

В современных машинных моторах, которые снабжены каталитическим нейтрализатором и системой впрыска топлива, надо точно следить за составом топливовоздушной смеси и поддерживать коэффициенты переобогащения воздуха на допустимом уровне (Лямбда равна 1), чем обеспечиваются уменьшение содержания токсичных веществ и экономия топлива. Для этого применяются ДКК (датчики управления концентрацией кислорода), которые устанавливаются системе отвода выхлопных газов и вырабатывают сигнал, который зависит от концентрации кислорода в выхлопном газе. Когда изменяется концентрация кислорода в выхлопных газах датчики концентрации кислорода формирует выходное напряжение, изменяемое приблизительно на 0,1В (содержание кислорода высокое- смесь бедная), до 0,9 В (низкое содержании кислорода - смесь богатая). Для правильной работы датчик должен иметь температуру выше, чем 300 °С. Поэтому после запуска двигателя для быстрого прогрева датчика управления, в него встроен нагревательный прибор. Сигнал от ДКК используется в блоке управления мотором для правки длительности открытого состояния форсунок и контроля стехиометрического состава смеси.

Зачастую используются титановые и циркониевые датчики концентрации кислорода, их работа основывается на том факте, что у них остается постоянным выходное напряжение (равно оно 0,45 В при а приблизительно равном ~1), однако может поменяться скачком от 0,1 В до 0,9 В если изменился коэффициент (в диапазоне Лямбда= 0,99...1,1) избытка воздуха.

Есть несколько вариантов датчиков концентрации кислорода.

  1. Датчик с заземляемым корпусом и одним потенциальным выводом. От потенциального вывода сигнал поступит в блок управления. В качестве второго провода используют «массу» автомашины.
  2. Датчик с парой потенциальных выводов. Здесь измерительная цепь не связана с «массой» авто, а работает только второй провод.
  3. Датчик с установленными тремя выводами, на одном из них - измерительный сигнал, два оставшиеся - питание электронагревателя. В качестве «земли» выступает «масса» авто.
  4. Датчик, у которого четыре вывода. Здесь, и датчик, и нагреватель изолированы от «массы».

Диагностирование датчика концентрации кислорода при помощи сканера Bosch

Процедура диагностирования заключается в следующем.

  1. Подключить сканер к разъему диагностики машины,
  2. Хорошо прогреть датчик концентрации кислорода и двигатель в режиме холостого хода, потом поднять обороты до 3000 об/мин.
  3. Убедиться, что системы управления мотором работают в замкнутом режиме, затем:
  4. Устанавливаем на сканере режим осциллографа параметров датчика концентрации кислорода
  5. Анализируем параметры работы всех датчиков

При исправности датчика ДКК и системы подачи топлива амплитуда сигнала должна плавно колебаться с частотой 4-19 Гц при постоянной скорости вращения коленчатого вала мотора. Нижний уровень должен быть в диапазоне 0,15-0,4 В, верхний - между 0,5-0,8 В.

Неисправности, которые приводящие к неверным показаниям датчика кислорода при диагностике датчиков управления двигателем автомобиля.

Стоит напомнить, что датчик кислорода реагирует на давление кислорода в отработанном газе, а не на наличие горючего, поэтому в ряде случаях датчик кислорода может ложно индицировать либо богатую, либо бедную смесь.

При пропуске зажигания (к примеру, закокосована или неисправна свеча) кислород не вступивший в реакцию горения поступит в выпускной коллектор, в нем датчик кислорода может ложно зарегистрировать обеднение воздушно-топливной смеси.

Если выпускной коллектор будет не герметичный, то датчик кислорода будет снимать показатели с кислород воздуха, который поступил извне.

В любом случае ЭБУ мотора реагирует на ложное обеднение воздушно-топливной смеси как на правдивое и автоматически повышает в цилиндры подачу топлива. Это может привести к забрызгиванию свечей, к значительному перерасходу топлива и к пропускам воспламенения.


Датчик кислорода может выдать не правдивый сигнал об обогащении топливной смеси, если датчик «отравлен». Отравление может наступить при появлении вредных веществ в коллекторе, что вызовет постепенный выход его из строя прибора или изменение его статических характеристик. Чаще всего отравляют датчика свинец (РЬ) или кремний (Si). Ложное обогащение может быть и при поломанном перепускном клапане в системе рециркуляции отработанных газов, со стороны высоковольтного близкорасположенного провода системы зажигания от электрических наводок, а также, если датчика кислорода плохо заземлен.

Датчик температуры мотора

Датчик температуры охлаждающей воды — датчик температуры мотора (ДТМ), но смотрится в виде термистора, т. е. полупроводникового резистора, его сопротивление меняется зависимо от температуры. Датчик вворачивается в проточный патрубок охлаждающей системы мотора и повсевременно находится в потоке охлаждающей воды. Когда температура воды низкая датчик имеет высочайшее сопротивление (приблизительно 100 кОм при ~44 °С), а когда температура высочайшая напротив — низкое (11—34 Ом при 140 °С). ЭБУ мотора через сопротивление определенной величины подает к датчику стабилизированное напряжение в размере 5 В и с помощью делителя определяет падение напряжения на приборе. На прохладном движке оно будет высочайшим, а когда мотор прогрет — низким. По измеренному понижению напряжения на приборе, блок управления определяет температурный показатель охлаждающей воды. Данный показатель оказывает влияние на работу огромного количества систем, которыми управляет автоматика.

Например, по температуре мотора корректируется состав воздушно-топливной консистенции (ВТ-смеси): для прохладного мотора смесь должна быть более обогащенной, для прогретого более обедненной. По температуре мотора также корректируется угол опережения зажигания.

Нехорошее соединение (обрыв) в цепи датчика охлаждающей воды передастся в блок управления как низкая температура мотора. ВТ-смесь при всем этом очень обогатиться обогащается, и мотор начинает работать наименее экономно, загрязняет при всем этом окружающую среду. В памяти ЭБУ-Д (в регистраторе дефектов) будет записан код, в расшифровке имеющий вид «Работа мотора на более богатой ВТ-смеси».

Неисправность датчика температуры воды либо замыкание в цепи интерпретируется в ЭБУ мотора как перегрев. Система впрыска горючего будет сформировывать ВТ-смесь, которая переобеднена, и работа мотора станет неуравновешенной. В памяти регистратора блока управления запишется код неисправности «Работа мотора на бедной ВТ-смеси».

Схожий датчик охлаждающей воды нужно инспектировать в таких случаях, как:

  • негаснущая контрольная лампа «перегрев мотора» (если имеется);
  • обнаружение в регистраторе неисправности соответственных кодов;
  • завышенный расход горючего, детонация либо завышенная концентрации в выхлопных газах СО;
  • затрудненный запуск, неуравновешенная работа либо остановка мотора на холостом ходу.

Также при тестировании устройств существует необходимость в внедрение технической документации для раздельно взятого авто либо встроенное в ПО исследовательских устройств пути дефектов, дающие полную картину прошедшей проверки.

Устранения дефектов и внедрение S.A.I.S. AUTODATA в поиске.

Перед тем как инспектировать датчик температуры охлаждающей воды стоит убедиться в корректности работы системы остывания мотора.

Охлаждающая система должна быть корректно заправлена жидкостью «остывания». Резервуар расширителя и радиатор должны быть по норме заполнены. Крышку радиатора стоит снимать лишь на остывшем моторе, по другому охладитель, у которого температура работы более 100 С может причинить вам ожоги. Для обычного функционирования датчика управления его механическая часть должна повсевременно находиться в охлаждающей воды.

Крышка радиатора должна герметично запираться, по другому в системе могут быть образованы воздушные «кармашки» и показания прибора будут искажены.

Состав охладителя должен по всем показателям соответствовать советам производителя. Часто употребляется смесь 50% антифриза и 50% воды. По теплопроводимости такая смесь считается хорошей.

Вентилятор должен верно работать, чтоб мотор не перегревался. Если в охлаждающей системе находится электроконтактный термовыключатель либо термостат, то нужно убедиться в их полной возможности к работе.

Диагностика датчиков температуры воды с помощью сканера Bosch KTS.

Компания BOSCH (Германия)- мировой фаворит на рынке исследовательских датчиков для автомобилей. Применение ведущих технологий, сотрудничество с авто концернами, большой опыт работы, позволило фирме BOSCH сделать для себя бренд изготовителя высококачественного и надежного оборудования. Следствием выполненной работы, является системная диагностика ESI и KTS.

Все механизмы состоят из набора нужных для работы кабелей и аппаратной части мультиплекора. Неизменное развитие ESI позволяет обновлять перечень диагностируемых блоков управления машиной, что дает возможность с уверенностью браться за работу практически с хоть какой машиной. Итак, на сей день большой охват: 65 марок автомобилей, 1350 типов автомобилей, 145 авто систем, около 17000 блоков управления.

Все это оборудование полностью комфортно, позволяет стремительно освоить все способности и имеет понятное управление. Нет никаких колебаний в том, что этот продукт является самой универсальной и высококачественной системной исследовательских датчиков.

Протоколы поддерживаемые Bosch KTS540:

  • ISO 15765-4 (OBD)
  • CAN ISO 11898
  • ISO 9141-2 (K/L lines)
  • SAE-J1850 SPC
  • SAE-J1850 DLC
  • Blink-code
  • Low Speed CAN, Middle Speed-, High Speed-, CAN Single Wire

Способности:

  • Базовые опции
  • Сброс сервисных интервалов
  • Управление исполнительными механизмами
  • Вывод текущих данных в графическом либо цифровом виде
  • Идентификация блоков (№ софта, заглавие компаний производителя, …)
  • Удаление/чтение кодов ошибок и их расшифровка

Сканер прекрасно подойдет для диагностики опций всех устройств, включая датчик температуры охлаждающей воды. Интерфейс этой программки очень прост и дает необъятную информативность для устранения и поиска неисправности системы управления мотором. На экран монитора ноутбука либо компьютера в составе KTS Bosch, который подключен к диагностическому бортовому разъему, выводятся значения датчика температуры в текущий период.

Датчик положения заслонки дросселя

Датчик положения заслонки дросселя устанавливается на дроссельном патрубке с боковой стороны и связан с дроссельной заслонкой (поточнее ее осью). Датчик смотрится в виде трех-выводного потенциометра, на один его вывод подается плюс стабилизированного напряжения 6 В, а другой вывод предполагает за собой массу. С третьего вывода от ползунка (потенциометра) снимается сигнал для блока управления. Когда при воздействии, на педаль управления заслонка дросселя поворачивается, на выходе датчика напряжение меняется. Когда заслонка закрыта оно ниже 1 В. Когда заслонка перебегает в открытое положение, напряжение на выходе датчика увеличивается и при стопроцентно открытой заслонке должно быть более чем 5 В. Отслеживая напряжение датчика на выходе, ЭБУ корректирует количество горючего впрыснутого форсунками зависимо от градуса угла открытия заслонки дросселя. Так в системах питания горючего с электронноуправляемым впрыском производится акселерация. В подавляющем большинстве случаев датчик положения заслонки дросселя не просит никакого регулирования, потому что ЭБУ принимает холостой ход, как исходную отметку. Но датчики положения заслонки дросселя отдельных производителей все-же нуждаются в некой настройке, которая в таком случае производится по методике и спецификации производителя. Эта процедура проверки не очень подходит для диагностики заслонки дросселя с электрическим управлением.

Датчик концентрации кислорода

В современных машинных моторах, которые снабжены каталитическим нейтрализатором и системой впрыска горючего, нужно точно смотреть за составом топливовоздушной консистенции и поддерживать коэффициенты переобогащения воздуха на допустимом уровне (Лямбда равна 1), чем обеспечиваются уменьшение содержания ядовитых веществ и экономия горючего. Для этого используются ДКК (датчики управления концентрацией кислорода), которые инсталлируются системе отвода выхлопных газов и вырабатывают сигнал, который находится в зависимости от концентрации кислорода в выхлопном газе. Когда меняется концентрация кислорода в выхлопных газах датчики концентрации кислорода сформировывает выходное напряжение, изменяемое примерно на 0,1В (содержание кислорода высочайшее— смесь бедная), до 0,9 В (низкое содержании кислорода — смесь богатая). Для правильной работы датчик обязан иметь температуру выше, чем 300 °С. Потому после пуска мотора для резвого прогрева датчика управления, в него встроен нагревательный прибор. Сигнал от ДКК употребляется в блоке управления мотором для правки продолжительности открытого состояния форсунок и контроля стехиометрического состава консистенции.

Часто употребляются титановые и циркониевые датчики концентрации кислорода, их работа основывается на том факте, что у их остается неизменным выходное напряжение (равно оно 0,45 В при а примерно равном ~1), но может обменяться скачком от 0,1 В до 0,9 В если поменялся коэффициент (в спектре Лямбда= 0,99…1,1) излишка воздуха.

Есть несколько вариантов датчиков концентрации кислорода.

  1. Датчик с заземляемым корпусом и одним возможным выводом. От потенциального вывода сигнал поступит в блок управления. В качестве второго провода употребляют «массу» автомашины.
  2. Датчик с парой возможных выводов. Тут измерительная цепь не связана с «массой» авто, а работает только 2-ой провод.
  3. Датчик с установленными 3-мя выводами, на одном из их — измерительный сигнал, два оставшиеся — питание электронагревателя. В качестве «земли» выступает «масса» авто.
  4. Датчик, у которого четыре вывода. Тут, и датчик, и нагреватель изолированы от «массы».

Диагностирование датчика концентрации кислорода с помощью сканера Bosch

Процедура диагностирования заключается в последующем.

  1. Подключить сканер к разъему диагностики машины,
  2. Отлично прогреть датчик концентрации кислорода и движок в режиме холостого хода, позже поднять обороты до 3000 об/мин.
  3. Убедиться, что системы управления мотором работают в замкнутом режиме, потом:
  4. Устанавливаем на сканере режим осциллографа характеристик датчика концентрации кислорода
  5. Анализируем характеристики работы всех датчиков

При исправности датчика ДКК и системы подачи горючего амплитуда сигнала должна плавненько колебаться с частотой 4—19 Гц при неизменной скорости вращения коленчатого вала мотора. Нижний уровень должен быть в спектре 0,15—0,4 В, верхний — меж 0,5—0,8 В.

Неисправности, которые приводящие к неправильным свидетельствам датчика кислорода при диагностике датчиков управления движком автомобиля.

Стоит напомнить, что датчик кислорода реагирует на давление кислорода в отработанном газе, а не на наличие горючего, потому в ряде случаях датчик кислорода может неверно индицировать или богатую, или бедную смесь.

При пропуске зажигания (например, закокосована либо неисправна свеча) кислород не вступивший в реакцию горения поступит в выпускной коллектор, в нем датчик кислорода может неверно зарегистрировать обеднение воздушно-топливной консистенции.

Если выпускной коллектор будет не герметичный, то датчик кислорода будет снимать характеристики с кислород воздуха, который поступил снаружи.

В любом случае ЭБУ мотора реагирует на неверное обеднение воздушно-топливной консистенции как на правдивое и автоматом увеличивает в цилиндры подачу горючего. Это может привести к забрызгиванию свеч, к значительному перерасходу горючего и к пропускам воспламенения.

Датчик кислорода может выдать не правдивый сигнал об обогащении топливной консистенции, если датчик «отравлен». Отравление может наступить при возникновении вредных веществ в коллекторе, что вызовет постепенный выход его из строя прибора либо изменение его статических черт. В большинстве случаев отравляют датчика свинец (РЬ) либо кремний (Si). Неверное обогащение может быть и при поломанном перепускном клапане в системе рециркуляции отработанных газов, со стороны высоковольтного близлежащего провода системы зажигания от электронных наводок, также, если датчика кислорода плохо заземлен.

Для устранения неисправностей существуют базовые схемы проверок различных компонентов. В статье «Диагностика: датчики управления двигателем автомобиля» мы расскажем, как вести себя с теми или иными приборами, контролирующими работу мотора.

Датчик температуры мотора

Датчик температуры охлаждающей жидкости — датчик температуры мотора (ДТМ), но выглядит в виде термистора, т. е. полупроводникового резистора, его сопротивление изменяется в зависимости от температуры. Датчик вворачивается в проточный патрубок охлаждающей системы мотора и постоянно присутствует в потоке охлаждающей жидкости. Когда температура жидкости низкая датчик имеет высокое сопротивление (примерно 100 кОм при ~44 °С), а когда температура высокая наоборот - низкое (11-34 Ом при 140 °С). ЭБУ мотора через сопротивление определенной величины подает к датчику стабилизированное напряжение в размере 5 В и при помощи делителя измеряет падение напряжения на приборе. На холодном двигателе оно будет высоким, а когда мотор прогрет — низким. По измеренному снижению напряжения на приборе, блок управления определяет температурный показатель охлаждающей жидкости. Данный показатель влияет на работу множества систем, которыми управляет автоматика.

К примеру, по температуре мотора корректируется состав воздушно-топливной смеси (ВТ-смеси): для холодного мотора смесь должна быть более обогащенной, для прогретого более обедненной. По температуре двигателя также корректируется угол опережения зажигания.

Плохое соединение (обрыв) в цепи датчика охлаждающей жидкости передастся в блок управления как низкая температура мотора. ВТ-смесь при этом сильно обогатиться обогащается, и мотор начинает работать менее экономично, загрязняет при этом окружающую среду. В памяти ЭБУ-Д (в регистраторе неисправностей) будет записан код, в расшифровке имеющий вид «Работа мотора на более богатой ВТ-смеси».

Неисправность датчика температуры жидкости или замыкание в цепи интерпретируется в ЭБУ мотора как перегрев. Система впрыска горючего будет формировать ВТ-смесь, которая переобеднена, и работа мотора станет неустойчивой. В памяти регистратора блока управления запишется код неисправности «Работа мотора на бедной ВТ-смеси».

Подобный датчик охлаждающей жидкости надо проверять в таких случаях, как:

    негаснущая контрольная лампа «перегрев мотора» (если имеется);
    обнаружение в регистраторе неисправности соответствующих кодов;
    повышенный расход топлива, детонация или повышенная концентрации в выхлопных газах СО;
    затрудненный пуск, неустойчивая работа или остановка мотора на холостом ходу.

Также при тестировании механизмов существует необходимость в использование технической документации для отдельно взятого авто или встроенное в ПО диагностических приборов пути неисправностей, дающие полную картину прошедшей проверки.

Устранения неисправностей и использование S.A.I.S. AUTODATA в поиске.

Перед тем как проверять датчик температуры охлаждающей жидкости стоит убедиться в правильности работы системы охлаждения мотора.

Система охлаждения должна быть корректно заправлена жидкостью «охлаждения». Резервуар расширителя и радиатор должны быть по норме заполнены. Крышку радиатора стоит снимать только на остывшем моторе, иначе охладитель, у которого температура работы более 100 С может причинить вам ожоги. Для простого функционирования датчика управления его механическая часть должна постоянно находиться в охлаждающей жидкости.

Крышка радиатора должна герметично закрываться, иначе в системе могут быть образованы воздушные «карманы» и показания прибора будут искажены.

Состав охладителя должен по всем показателям соответствовать рекомендациям производителя. Зачастую используется смесь 50% антифриза и 50% воды. По теплопроводности такая смесь считается оптимальной.

Вентилятор должен правильно работать, чтобы мотор не перегревался. Если в системе охлаждения присутствует электроконтактный термовыключатель или термостат, то необходимо убедиться в их полной способности к работе.

Диагностика датчиков температуры жидкости при помощи сканера Bosch KTS.

Фирма BOSCH (Германия)- мировой лидер на рынке диагностических датчиков для автомобилей. Применение передовых технологий, сотрудничество с автомобильными концернами, огромный опыт работы, позволило фирме BOSCH создать себе бренд изготовителя качественного и надежного оборудования. Следствием выполненной работы, является системная диагностика ESI и KTS.

Все механизмы состоят из набора необходимых для работы кабелей и аппаратной части мультиплекора. Постоянное развитие ESI позволяет обновлять список диагностируемых блоков управления машиной, что дает возможность с уверенностью браться за работу почти с любой машиной. Итак, на сегодня огромный охват: 65 марок автомобилей, 1350 типов автомобилей, 145 автомобильных систем, около 17000 блоков управления.

Все это оборудование вполне удобно, позволяет быстро освоить все возможности и имеет понятное управление. Нет никаких сомнений в том, что этот продукт является самой универсальной и качественной системной диагностических датчиков.

Протоколы поддерживаемые Bosch KTS540:

  • ISO 15765-4 (OBD)
  • CAN ISO 11898
  • ISO 9141-2 (K/L lines)
  • SAE-J1850 SPC
  • SAE-J1850 DLC
  • Blink-code
  • Low Speed CAN, Middle Speed-, High Speed-, CAN Single Wire

Возможности:

    Базисные настройки
    Сброс сервисных интервалов
    Управление исполнительными механизмами
    Вывод текущих данных в графическом или цифровом виде
    Идентификация блоков (№ софта, название фирм производителя, …)
    Удаление/чтение кодов ошибок и их расшифровка

Сканер отлично подойдет для диагностики опций всех приборов, включая датчик температуры охлаждающей жидкости. Интерфейс этой программы весьма прост и дает обширную информативность для устранения и поиска неисправности системы управления мотором. На дисплей монитора ноутбука или компьютера в составе KTS Bosch, который подключен к диагностическому бортовому разъему, выводятся значения датчика температуры в текущий период.

Датчик положения заслонки дросселя

Датчик положения заслонки дросселя устанавливается на дроссельном патрубке сбоку и связан с дроссельной заслонкой (точнее ее осью). Датчик выглядит в виде трех-выводного потенциометра, на один его вывод подается плюс стабилизированного напряжения 6 В, а другой вывод подразумевает за собой массу. С третьего вывода от ползунка (потенциометра) снимается сигнал для блока управления. Когда при воздействии, на педаль управления заслонка дросселя поворачивается, на выходе датчика напряжение изменяется. Когда заслонка закрыта оно ниже 1 В. Когда заслонка переходит в открытое положение, напряжение на выходе датчика повышается и при полностью открытой заслонке должно быть более чем 5 В. Отслеживая напряжение датчика на выходе, ЭБУ корректирует количество топлива впрыснутого форсунками в зависимости от градуса угла открытия заслонки дросселя. Так в системах питания топлива с электронноуправляемым впрыском выполняется акселерация. В подавляющем большинстве случаев датчик положения заслонки дросселя не требует никакого регулирования, так как ЭБУ воспринимает холостой ход, как начальную отметку. Однако датчики положения заслонки дросселя отдельных производителей все-таки нуждаются в некоторой настройке, которая в таком случае выполняется по методике и спецификации производителя. Эта процедура проверки не очень подходит для диагностики заслонки дросселя с электронным управлением.

Датчик концентрации кислорода

В современных машинных моторах, которые снабжены каталитическим нейтрализатором и системой впрыска топлива, надо точно следить за составом топливовоздушной смеси и поддерживать коэффициенты переобогащения воздуха на допустимом уровне (Лямбда равна 1), чем обеспечиваются уменьшение содержания токсичных веществ и экономия топлива. Для этого применяются ДКК (датчики управления концентрацией кислорода), которые устанавливаются системе отвода выхлопных газов и вырабатывают сигнал, который зависит от концентрации кислорода в выхлопном газе. Когда изменяется концентрация кислорода в выхлопных газах датчики концентрации кислорода формирует выходное напряжение, изменяемое приблизительно на 0,1В (содержание кислорода высокое- смесь бедная), до 0,9 В (низкое содержании кислорода - смесь богатая). Для правильной работы датчик должен иметь температуру выше, чем 300 °С. Поэтому после запуска двигателя для быстрого прогрева датчика управления, в него встроен нагревательный прибор. Сигнал от ДКК используется в блоке управления мотором для правки длительности открытого состояния форсунок и контроля стехиометрического состава смеси.

Зачастую используются титановые и циркониевые датчики концентрации кислорода, их работа основывается на том факте, что у них остается постоянным выходное напряжение (равно оно 0,45 В при а приблизительно равном ~1), однако может поменяться скачком от 0,1 В до 0,9 В если изменился коэффициент (в диапазоне Лямбда= 0,99…1,1) избытка воздуха.

Есть несколько вариантов датчиков концентрации кислорода.

    — Датчик с заземляемым корпусом и одним потенциальным выводом. От потенциального вывода сигнал поступит в блок управления. В качестве второго провода используют «массу» автомашины.
    — Датчик с парой потенциальных выводов. Здесь измерительная цепь не связана с «массой» авто, а работает только второй провод.
    — Датчик с установленными тремя выводами, на одном из них - измерительный сигнал, два оставшиеся - питание электронагревателя. В качестве «земли» выступает «масса» авто.
    — Датчик, у которого четыре вывода. Здесь, и датчик, и нагреватель изолированы от «массы».

Диагностирование датчика концентрации кислорода при помощи сканера Bosch

Процедура диагностирования заключается в следующем.

    Подключить сканер к разъему диагностики машины,
    Хорошо прогреть датчик концентрации кислорода и двигатель в режиме холостого хода, потом поднять обороты до 3000 об/мин.
    Убедиться, что системы управления мотором работают в замкнутом режиме, затем:
    Устанавливаем на сканере режим осциллографа параметров датчика концентрации кислорода
    Анализируем параметры работы всех датчиков

При исправности датчика ДКК и системы подачи топлива амплитуда сигнала должна плавно колебаться с частотой 4-19 Гц при постоянной скорости вращения коленчатого вала мотора. Нижний уровень должен быть в диапазоне 0,15-0,4 В, верхний - между 0,5-0,8 В.

Неисправности, которые приводящие к неверным показаниям датчика кислорода при диагностике датчиков управления двигателем автомобиля.

Стоит напомнить, что датчик кислорода реагирует на давление кислорода в отработанном газе, а не на наличие горючего, поэтому в ряде случаях датчик кислорода может ложно индицировать либо богатую, либо бедную смесь.

При пропуске зажигания (к примеру, закокосована или неисправна свеча) кислород не вступивший в реакцию горения поступит в выпускной коллектор, в нем датчик кислорода может ложно зарегистрировать обеднение воздушно-топливной смеси.

Если выпускной коллектор будет не герметичный, то датчик кислорода будет снимать показатели с кислород воздуха, который поступил извне.

В любом случае ЭБУ мотора реагирует на ложное обеднение воздушно-топливной смеси как на правдивое и автоматически повышает в цилиндры подачу топлива. Это может привести к забрызгиванию свечей, к значительному перерасходу топлива и к пропускам воспламенения.

Датчик кислорода может выдать не правдивый сигнал об обогащении топливной смеси, если датчик «отравлен». Отравление может наступить при появлении вредных веществ в коллекторе, что вызовет постепенный выход его из строя прибора или изменение его статических характеристик. Чаще всего отравляют датчика свинец (РЬ) или кремний (Si). Ложное обогащение может быть и при поломанном перепускном клапане в системе рециркуляции отработанных газов, со стороны высоковольтного близкорасположенного провода системы зажигания от электрических наводок, а также, если датчика кислорода плохо заземлен.

Современный автомобиль состоит из множества механических, электромеханических и электронных компонентов. Оптимальная работа двигателя должна обеспечиваться независимо от внешних условий. При изменении внешних факторов, работа узлов и компонентов должна адаптироваться под них. Датчики автомобиля служат своеобразным следящим устройством за работой автомобиля. Рассмотрим основные датчики:

3. Датчик расхода воздуха в авто — на что влияет?

Принцип работы датчика расхода воздуха основан на измерении количества тепла, отданного потоку воздуха во впускном коллекторе двигателя. Нагревательный
элемент датчика установлен перед воздушным фильтром автомобиля. Изменение
скорости потока воздуха и, соответственно, его массовой доли, отражается на степени
изменения температуры нагревательной спирали MAF-сенсора.

«Троение» двигателя при работе и потеря мощности говорит о возможном выходе из строя датчика расхода воздуха.

4. Кислородный датчик, лямда-зонд — неисправность датчика

Кислородный датчик или лямда-зонд определяет количество кислорода в выпускном коллекторе, оставшегося после сгорания топлива. Лямда-зонд входит в электронную систему управления двигателем, которая регулирует количество топлива, обеспечивая его полноту сгорания. Повышенный расход топлива характеризует возможную неисправность датчика.

5. Датчик дроссельной заслонки — признаки неисправности

Этот датчик представляет собой электромеханическое устройство, состоящего из чувствительного элемента и шагового двигателя.

Чувствительным элементом является
температурный датчик, а шаговый двигатель является исполнительным механизмом.
Это электромеханическое устройство изменяет положение дроссельной заслонки
относительно температуры охлаждающей жидкости. Таким образом, частота вращения
коленчатого вала двигателя зависит от степени нагрева ОЖ.

Характерным признаком неисправности этого датчика является отсутствие прогревочных оборотов и повышенный расход топлива.

6. Датчик давления масла — функции, выход из строя

На автомобилях японской марки устанавливается датчик давления масла мембранного
типа. Датчик состоит из двух полостей, разделенных гибкой мембраной. Масло
воздействует на мембрану с одной стороны, прогибаясь от давления. В измерительной
полости датчика мембрана соединена со штоком реостата.

В зависимости от давления моторного масла, мембрана прогибается больше или меньше, изменяя при этом общее сопротивление сенсора. Датчик давления масла расположен на блоке цилиндров двигателя.

Горящая лампочка давления масла на панели автомобиля может свидетельствовать о выходе из строя датчика.

7. Не работает датчик детонации в двигателе?

Датчик детонации двигателя измеряет угол опережения зажигания. При нормальной работе двигателя датчик находится в «холостом» режиме. При изменении процесса
сгорания в сторону взрывного характера сгорания топлива-детонации, датчик посылает сигнал электронной системе управления двигателем для изменения угла опережения
зажигания в сторону уменьшения.

Он расположен в районе воздушного фильтра на блоке цилиндров. Для проверки работоспособности датчика детонации, необходимо выполнить .

8. Датчик угла поворота распредвала — троит двигатель


Этот датчик находится на головке блока цилиндров и измеряет частоту вращения
распределительного вала двигателя, и на основе сигналов от датчика, блок управления определяет текущее положение поршней в цилиндрах.

Неравномерность работы двигателя и троение свидетельствует о некорректной работе датчика. Проверку производят при помощи омметра, измеряя сопротивление между клеммами сенсора.

9. Датчик АБС / ABS в автомобиле — проверяем работоспособность


Датчики АБС электромагнитного типа устанавливаются на колесах автомобиля и входят в антиблокировочную систему автомобиля.

Функцией датчика является измерение частоты вращения колеса. Объектом измерения датчика является сигнальный зубчатый диск, который установлен на ступице колеса. При неисправном датчике АБС, контрольная лампочка на панели управления не гаснет после запуска двигателя.

Технология определения работоспособности датчика заключается в измерении сопротивления между контактами датчика, при неисправности сопротивление равняется нулю.

10. Датчик уровня топлива в авто — как проверить работоспособность?

Датчик уровня топлива устанавливается в корпус бензонасоса и состоит из нескольких компонентов. Поплавок посредством длинной штанги воздействует на секторный реостат, который изменяет сопротивление датчика в зависимости от уровня топлива в баке автомобиля. Сигналы датчика поступают на стрелочный или электронный указатель на панели управления автомобиля. Проверка работоспособности датчика уровня топлива осуществляется омметром, которым измеряется сопротивление между контактами датчика.

Для многих начинающих диагностов и простых автолюбителей, которым интересна тема диагностики будет полезна информация о типичных параметрах двигателей. Поскольку наиболее распространенные и простые в ремонте двигатели автомобилей ВАЗ, то и начнем именно с них. На что в первую очередь надо обратить внимание при анализе параметров работы двигателя?
1. Двигатель остановлен.
1.1 Датчики температуры охлаждающей жидкости и воздуха (если есть). Проверяется температура на предмет соответствия показаний реальной температуре двигателя и воздуха. Проверку лучше производить с помощью бесконтактного термометра. К слову сказать, одни из самых надежных в системе впрыска двигателей ВАЗ – это датчики температуры.

1.2 Положение дроссельной заслонки (кроме систем с электронной педалью газа). Педаль газа отпущена – 0%, акселератор нажали – соответственно открытию дроссельной заслонки. Поиграли педалью газа, отпустили – должно также остаться 0%, ацп при этом с дпдз около 0,5В. Если угол открытия прыгает с 0 до 1-2%, то как правило это признак изношенного дпдз. Реже встречается неисправности в проводке датчика. При полностью нажатой педали газа некоторые блоки покажут 100% открытия (такие как январь 5.1 , январь 7.2), а другие как например Bosch MP 7.0 покажут только 75%. Это нормально.

1.3 Канал АЦП ДМРВ в режиме покоя: 0.996/1.016 В - нормально, до 1.035 В еще приемлемо, все что выше уже повод задуматься о замене датчика массового расхода воздуха. Системы впрыска, оснащенные обратной связью по датчику кислорода способны скорректировать до некоторой степени неверные показания ДМРВ, но всему есть предел, поэтому не стоит тянуть с заменой этого датчика, если он уже изношен.

2. Двигатель работает на холостом ходу.

2.1 Обороты холостого хода. Обычно это – 800 – 850 об/мин при полностью прогретом двигателе. Значение количества оборотов на холостом ходу зависят от температуры двигателя и задаются в программе управления двигателем.

2.2 Массовый расход воздуха. Для 8ми клапанных двигателей типичное значение составляет 8-10 кг/ч, для 16ти клапанных – 7 – 9,5 кг/час при полностью прогретом двигателе на холостом ходу. Для ЭБУ М73 эти значения несколько больше в связи с конструктивной особенностью.

2.3 Длительность времени впрыска. Для фазированного впрыска типичное значение составляет 3,3 – 4,1 мсек. Для одновременного – 2,1 – 2,4 мсек. Собственно не так важно само время впрыска, как его коррекция.

2.4 Коэффициент коррекции времени впрыска. Зависит от множества факторов. Это тема для отдельной статьи, здесь только стоит упомянуть, что чем ближе к 1,000 тем лучше. Больше 1,000 – значит смесь дополнительно обогащается, меньше 1,000 значит обедняется.

2.5 Мультипликативная и аддитивная составляющая коррекции самообучением. Типичное значение мультипликатива 1 +/-0,2. Аддитив измеряется в процентах и должен быть на исправной системе не более +/- 5%.

2.6 При наличии признака работы двигателя в зоне регулировки по сигналу датчика кислорода последний должен рисовать красивую синусоиду от 0,1 до 0,8 В.

2.7 Цикловое наполнение и фактор нагрузки. Для «январей» типичный цикловой расход воздуха: 8ми клапанный двигатель 90 – 100 мг/такт, 16ти клапанный 75 -90 мг/такт. Для блоков управления Bosch 7.9.7 типичный фактор нагрузки 18 – 24 %.

Теперь рассмотрим подробнее, как на практике ведут себя эти параметры. Поскольку для диагностики я пользуюсь программой SMS Diagnostics (Алексею Михеенкову и Сергею Сапелину привет!) , то все скриншоты будут оттуда. Параметры сняты с практически исправных автомобилей, за исключением отдельно оговоренных случаев.
Все изображения кликабельны.

Ваз 2110 8ми клапанный двигатель, блок управления Январь 5.1
Здесь немного подправлен коэффициент коррекции СО в связи с небольшим износом ДМРВ.

Ваз 2107, блок управления Январь 5.1.3

Ваз 2115 8ми клапанный двигатель, блок управления Январь 7.2

Двигатель Ваз 21124, блок управления Январь 7.2

Ваз 2114 8ми клапанный двигатель, блок управления Bosch 7.9.7

Приора, двигатель Ваз 21126 1,6 л., блок управления Bosch 7.9.7

Жигули Ваз 2107, блок управления М73

Двигатель Ваз 21124, блок управления М73

Ваз 2114 8ми клапанный двигатель, блок управления М73

Калина, 8ми клапанный двигатель, блок управления М74

Нива двигатель ВАЗ-21214, блок управления Bosch ME17.9.7

И в заключении напомню, что приведенные выше скриншоты сняты с реальных автомобилей, но к сожалению зафиксированные параметры не являются идеальными. Хотя я и старался фиксировать параметры только с исправных автомобилей.