Выбор подшипников по динамической грузоподъемности для предупреждения усталостного разрушения. Большая энциклопедия нефти и газа

С (потребная) ? С (паспортная).

Паспортная динамическая грузоподъемность С - это такая постоянная сила, которую подшипник может воспринимать в течение 1 млн. оборотов без появления признаков усталости не менее чем у 90 % из определенного числа подшипников, подвергающихся испытаниям. При этом под С пони-мается постоянная радиальная (для радиальных и радиально-упорных подшипников с невращающимся наружным кольцом) или осевая (для упорно-радиальных и упорных подшипников при вращении одного из колец) нагрузка.

Значения динамической грузоподъемности для каждого типоразмера подшипников заранее подсчитаны и указаны в каталоге. Формулы для их расчетов получены на основании совместного рассмотрения контактной задачи, законов распределения нагрузки между телами качения, кинематики подшипника, которая определяет число циклов нагружения и экспериментальной зависимости.

При расчете радиальной динамической грузоподъемности узла, состоящего из сдвоенных радиальных или радиально-упорных однорядных подшипников, пара одинаковых подшипников рассматривается как один двухрядный. Суммарная динамическая радиальная грузоподъемность комплекта из двух шарикоподшипников

а двух роликоподшипников

При выборе двухрядных радиально-упорных подшипников следует исходить из условия, что если, то в этих двухрядных подшипниках будет работать только один ряд тел качения и величину динамической грузоподъемности следует принимать как для однорядного подшипника. Следовательно, при двухрядные (сдвоенные) подшипники применять нецелесообразно.

> Эквивалентная динамическая нагрузка

При условии смазывания без загрязнений основной причиной выхода из строя подшипников качения является усталостное выкрашивание рабочих поверхностей колец и тел качения. Это связано с циклическим изменением контактных напряжений при вращении колец подшипника. Значение базовой динамической грузоподъемности С указывают в каталогах для каждого стандартного подшипника. В действительности такую нагрузку подшипник воспринимать не может, так как не выполняется условие Р 0,5С. Эквивалентная динамическая нагрузка Р - это такая условная нагрузка (радиальная для радиальных и радиально-упорных подшипников; осевая для упорных и упорно-радиальных), при которой обеспечиваются такой же ресурс и надежность, как и при действительных условиях нагружения. Для радиальных и радиально-упорных подшипников эквивалентная динамическая радиальная нагрузка

P = Pr = (XVFr + YFa)KбKт.

Для упорных подшипников

P = Pa = Fa KбKт.

Для упорно-радиальных подшипников

P = Pr = (XVFr+ YFa)KбKт.

В этих формулах Fr и Fa - соответственно радиальная и осевая нагрузки;

X и Y - коэффициенты радиальной и осевой динамической нагрузки;

V - коэффициент вращения;

Kб - коэффициент динамичности нагрузки;

Kт - температурный коэффициент.

Коэффициент вращения V учитывает влияние интенсивности и числа повторных циклов контактных напряжений внутреннего кольца на ресурс подшипника. Если внутреннее кольцо подшипника неподвижно по отношению к вектору нагрузки, то принимают V = 1,2. Во всех остальных случаях V = 1. Исключение составляют сферические подшипники, для которых в любом случае V = 1. Например, для подшипников, установленных в сателлит планетарной передачи, генератор волновой передачи, канатный блок или в шкив ременной передачи, вращающийся на разгрузочной втулке, V = 1,2.

Коэффициенты X и Y (табл. 7, 8, 9) зависят от конструкции подшипника и параметра осевого нагружения. Параметр осевого нагружения е равен предельному отношению Fa/(VFr) при котором осевая нагрузка не уменьшает ресурс подшипника. Это связано с тем, что с ростом осевой нагрузки при Fa/(VFr) е увеличивается дуга нагружения и нагрузка более равномерно распределяется между телами качения. При выборе подшипников следует стремиться к тому, чтобы отношение Fa/(VFr) было возможно ближе к е. В шарикоподшипниках с малыми углами контакта (< 18°) под влиянием осевой нагрузки действительный угол контакта изменяется, поэтому е зависит не только от номинального угла контакта, но и от Fa.

Таблица 7

Значения коэффициентов X и Y для однорядных шарикоподшипников при

Таблица 8

Значения Х, Y и для однорядных и двухрядных шарикоподшипников

Подшипники

однорядные

Подшипники двурядные

*Коэффициенты Y и e для промежуточных величин отношений определяются интерполяцией. При = 0 во всех случаях принимают i = 1.

Таблица 9

Подшипники однорядные

Подшипники двухрядные

Числовые значения Х, Y и для однорядных и двухрядных шарикоподшипников даны в табл. 8. Для двухрядных радиальных сферических шарикоподшипников. При, а при и. Для этих подшипников коэффициенты X, Y и e заранее подсчитаны и указаны в таблицах каталога для каждого типоразмера. Для конических и радиальных двухрядных сферических роликоподшипников значения Х, Y и e определяется по данным табл. 9. Числовые значения коэффициентов также заранее подсчитаны и указаны в таблицах каталога.

Радиальные роликовые подшипники с цилиндрическими роликами, а также игольчатые подшипники без бортов на одном из колец не воспринимают осевые нагрузки. Подшипники с бортами на обоих кольцах могут воспринимать небольшие кратковременные осевые нагрузки, но приложены они не к дорожкам качения, а к бортам. Поэтому при расчете эквивалентных нагрузок они не учитываются. Для таких подшипников X = 1, а Y = 0.

При расчете эквивалентной динамической радиальной нагрузки узла, состоящего из сдвоенных радиальных или радиально-упорных однорядных подшипников, установленных узкими или широкими торцами наружных колец друг к другу, используются значения коэффициентов X и Y для двухрядных подшипников из табл. 8 или 9. Для узлов, состоящих из двух или более одинаковых радиально-упорных однорядных подшип-ников, установленных последовательно и изготовленных и смон-тированных так, что нагрузка между ними распределяется равномерно, эквивалентную динамическую радиальную нагрузку определяют так же, как для однорядных подшипников. Сдвоен-ная установка радиальных подшипников не рекомендуется.

Предельные частоты вращения для комплектов сдвоенных радиально-упорных шарикоподшипников снижают на 20 % от указанных в таблице, а для комплектов подшипников серий 336000 К и 346000 К - на 60 %.

Выбор коэффициентов Kб и Kт. Коэффициент Kб учитывает динамичность нагрузки и приблизительно равен отношению значений кратковременной перегрузки к номинальной расчетной нагрузке. Ориентировочные значения коэффициента Kб приведены в табл. 10.

Таблица 10

Значения коэффициента Kб

Характер нагрузки и область применения

Нагрузка спокойная. Маломощные кинематические редукторы и приводы. Ролики ленточных конвейеров. Механизмы ручных кра-нов и блоков. Тали, кошки, ручные лебедки. Приводы управления

Кратковременная перегрузка до 120 %. Прецизионные зубчатые передачи. Металлорежущие станки (кроме строгальных, долбеж-ных и шлифовальных). Гироскопы. Механизмы подъема кранов. Электротали и монорельсовые тележки. Лебедки с механическим приводом. Электродвигатели малой и средней мощности. Легкие вентиляторы и воздуходувки

Кратковременная перегрузка до 150 %. Зубчатые передачи. Редукторы всех типов. Буксы рельсового подвижного состава. Механизмы передвижения крановых тележек. Механизмы поворота кранов. Механизмы изменения вылета стрелы кранов. Шпиндели шлифовальных станков

Кратковременная перегрузка до 180 %. Центрифуги и сепараторы. Буксы и тяговые двигатели электровозов. Механизмы и ходовые колёса кранов и дорожных машин. Строгальные и долбежные станки. Мощные электрические машины

Кратковременная перегрузка до 250 %. Дробилки и копры. Кривошипно-шатунные механизмы. Валки и адъюстаж прокатных ста-нов. Мощные вентиляторы

Кратковременная перегрузка до 300 %. Тяжелые ковочные машины. Лесопильные рамы. Холодильное оборудование. Валки и роликовые конвейеры крупносортных станов, блюмингов и слябингов

Для подшипников, работающих при температурах выше 100 °С, используют стали с более высокой, чем обычно, температурой отпуска и в зависимости от нее к обозначению под-шипника добавляют знаки Т, Т1, Т2-Т6 (температура отпуска соответственно 200, 225, 250, 300, 350, 400 и 450 °С). Рабочая температура подшипника, измеренная на наружном кольце, должна быть на 50 °С ниже температуры отпуска.

В табл. 11 приведены значения температурного коэффициента для подшипников из стали марки ШХ15. Как показывает практика, в ответственных случаях при выборе этого коэффициента в связи с отсутствием в справочниках сведений о смазке следует использовать экспериментальные данные.

Таблица 11

Значения температурного коэффициента Kт

В качестве основных критериев работоспособности подшипника качения следует считать износостойкость поверхностей качения, сопротивляемость пластическим деформациям и, в конечном итоге, долговечность подшипника.

Так как подшипники качения в подавляющем большинстве являются стандартизованными изделиями, при разработке подшипникового узла их проектный расчёт заменяется процедурой подбора подшипника.

Выбор подшипника качения (и установление необходимого паспорта подшипника) определяются следующими основными показателями:

1. характером нагрузки (постоянная, переменная, ударная), её величиной и направлением действия;

2. диаметром цапф вала и частотой его вращения;

3. необходимой долговечностью подшипникового узла ;

4. нагрузочной способностью подшипника (статическая и динами­ческая грузоподъёмность).

Долговечность – количество миллионов оборотов (L ) одного кольца подшипника относительно другого либо число моточасов работы (L h ) до появления усталостного разрушения.

Поскольку в силу разных причин (различия в прочности исходных материалов, колебания технологических режимов обработки и т.п.) однотипные подшипники качения могут несколько отличаться по долговечности, то в расчётах широко используется понятие базовой долговечности, под которой понимают долговечность большинства из одновременно испытанных подшипников. В общем машиностроении и при стандартных испытаниях подшипников обычно используется 90% базовая долговечность L 10 , то есть долговечность, которую имеют не менее 90 % участвующих в испытаниях подшипников (90 %-ная надёжность подшипников). При более жёстких требованиях к надёжности подшипникового узла в расчётах используется 95 %-ная базовая долговечность L 5 , а иногда и 97 %-ная - L 3 .

Базовая долговечность обеспечивается при базовой динамической грузоподъёмности. Базовая динамическая грузоподъёмность (C r – радиальная для радиальных и радиально-упорных подшипников, C a – осевая для упорных и упорно-радиальных) – нагрузка, которую выдерживает подшипник при сохранении базовой долговечности. В стандартах для каждого конкретного подшипника указывается обычно базовая динамическая грузоподъёмность C и предельно допустимая статическая нагрузка C 0 . Под статической понимается нагрузка, действующая на подшипник при относительной частоте вращения колец до 10 оборотов в минуту.

В реальных механизмах действующие в подшипнике нагрузки часто одновременно имеют как радиальную, так и осевую составляющие, а испытания подшипников производятся, как правило, под действием однонаправленной нагрузки. Поэтому для возможности сравнения долговечности подшипника под действием реальной и испытательной нагрузок введено понятие эквивалентной нагрузки . Эквивалентная динамическая нагрузка - постоянная однонаправленная нагрузка, при которой подшипник имеет такую же долговечность, как и в реальных условиях работы. Использование в расчётах эквивалентной нагрузки позволяет учесть не только характер и направление действующих сил, но и некоторые другие факторы, действующие на подшипниковый узел в реальных условиях его работы. Эквивалентная нагрузка R E подшипника качения может быть вычислена по выражению

где F r и F a – радиальная и осевая составляющие нагрузки, действу­ющей на вращающееся кольцо подшипника, X и Y – коэффициенты влияния радиальной и осевой нагрузок, соответственно; V – коэффициент вращаю­щегося кольца (если относительно действующей нагрузки вращается внут­реннее кольцо, то V = 1 , если наружное - V = 1,2 ); К Б – динамический коэф­фициент безопасности, учитывающий действие динамических перегрузок на долговечность подшипника (для редукторов общего применения К Б = 1,3…1,5 ); К Т – коэффициент, учитывающий влияние температуры подшип­никового узла на долговечность подшипника. При рабочей температуре подшипникового узла t° £ 100 °C , принимают K T = 1 , а для температур 100 < t° £ 250 °C температурный коэффициент можно определить по эмпирической зависимости

Подшипники качения выбирают из каталогов или справочников по динамической грузоподъемности С и диаметру вала так, чтобы табличное значение динамической грузоподъемности было больше фактической.

Фактическая динамическая грузоподъемность определяется по формуле:

где a – показатель степени, равный для шарикоподшипников 3, для роликоподшипников 3,33;

L – расчетный ресурс, миллион оборотов;

Расчетный ресурс L определяют по формуле:

, миллионов оборотов (171)

где n – частота вращения вала, об/мин;

L h – ресурс подшипника в часах, L h =2500…40000 часов.

Об/мин (172)

где w – угловая скорость вращения вала, рад/с;

Эквивалентную нагрузку Р определяют по формуле в зависимости от типа подшипников.

а) Радиальные подшипники.

Радиальные подшипники воспринимают только радиальную нагрузку. Приведенная нагрузка определяется по формуле:

К б – коэффициент безопасности, учитывающий динамическую нагрузку (таблица 36);

К Т – температурный коэффициент, вводимый только при повышенной рабочей температуре t > 100°.

К К – коэффициент вращения, равный 1 при вращении внутреннего кольца относительно направления нагрузки и 1,2 при вращении нагрузочного кольца.

Радиальная нагрузка берется из расчёта валов – суммарная реакция в наиболее нагруженной опоре.



, Н (174)

где F гор – реакция в опоре в горизонтальной плоскости, Н;

F верт – реакция в опоре в вертикальной плоскости, Н.

Таблица 36 – Значения коэффициента К б

Характер нагрузки на подшипники К б Примеры
Подшипники передач трением в машинах со спокойной внешней нагрузкой, ролики ленточных тормозов
Нагрузка с легкими толчками, кратковременные перегрузки до 125% от основной нагрузки 1,0–1,2 Подшипники передач зацеплением в машинах относительно спокойной внешней нагрузкой: в станках с вращательным главным движением, машинах для обработки волокон и т.д. Подшипники электродвигателей, конвейеров, транспортеров
Нагрузка с умеренными толчками, кратковременные перегрузки до 150% 1,3–1,8 Подшипники железнодорожного подвижного состава, коробок передач тракторов и автомобилей, редукторов. Подшипники колес автомобилей и тракторов; двигателей внутреннего сгорания, строгальных и долбежных станков, вагонеток для угля, редукторов т.д.

б) Радиально-упорные подшипники.).

Коэффициенты К d , К к, К Т и радиальная нагрузка выбираются так, как и для радиальных подшипников.

После выбора подшипников из справочника по диаметру вала и динамической грузоподъемности определяют истинное значение отношения .

По отношению по таблице 39 снова уточняют коэффициенты X и Y, параметр e, приведенную нагрузку, динамическую грузоподъемность.

Если динамическая грузоподъемность остается меньше табличной, то выбранный подшипник оставляют.

При расчете динамической грузоподъемности для двух одинаковых шариковых радиальных однорядных подшипников, установленных рядом на одном валу и образующих один подшипниковый узел, пару подшипников рассматривают как один радиальный двухрядный подшипник.

При расчете динамической грузоподъемности и эквивалентной радиальной нагрузки для двух одинаковых шариковых или роликовых радиально-упорных подшипников, установленных рядом на одном валу и образующих один узел, пару подшипников рассматривают как один радиально- упорный двухрядный подшипник. При этом коэффициенты X и Y при определении эквивалентной нагрузки роликовых подшипников принимают из таблиц двухрядных подшипников.

Таблица 37 - Размеры и параметры шариковых радиальных однорядных

Подшипники качения подбирают по статической грузоподъемности или заданной долговечности.
По статической грузоподъемности выбирают подшипники, у которых угловая скорость вращающегося кольца не превышает 1 об/мин ≈ 0,1 рад/с

Выбор подшипников по динамической грузоподъемности

Критерием для выбора подшипника служит неравенство С тр < С , (1)
где С тр - требуемая величина динамической грузоподъемности подшипника;
С - табличное значение динамической грузоподъемности выбранного подшипника

Для радиальных и радиально-упорных подшипников динамическая грузоподъемность представляет собой постоянную радиальную нагрузку, которую группа идентичных подшипников с неподвижным наружным кольцом сможет выдержать до возникновения усталостного разрушения рабочих поверхностей колец или тел качения в течение одного миллиона оборотов внутреннего кольца.
Для упорных подшипников определение динамической грузоподъемности аналогично, но вместо радиальной для них подразумевается осевая нагрузка

Формулами 2 и 3 выражена зависимость между приведенной нагрузкой подшипника Q , его долговечностью, выраженной в миллионах оборотов вращающегося кольца и обозначаемой L , или долговечностью L h , выраженной в часах работы, и угловой скоростью n об/мин.
α - коэффициент, зависящий от формы кривой контактной усталости и принимаемый для шариковых подшипников α = 3 и для роликовых α = 10/3.
Формулы справедливы при любом n > 10 об/мин, но не превышающем предельного значения n пред для данного типоразмера подшипника. Предельные значения (n пред) указаны в ГОСТах на подшипники (так как случаи работы подшипников при n > n пред встречаются редко, здесь значения не даны). При n = 1 ÷ 10 об/мин расчет ведут, исходя из n = 10 об/мин

Часто при подборе подшипников приходится определять расчетную долговечность выбранного подшипника, в частности, это необходимо в тех случаях, когда подбор подшипника ведут методом последовательных приближений. Расчетную долговечность (в миллионах оборотов или в часах) определяют по табличному значению динамической грузоподъемности и величине приведенной нагрузки по формулам 4 и 5

В качестве расчетной долговечности партии идентичных подшипников принято число оборотов (или часов при данной постоянной скорости), в течение которых не менее 90% из данной партии подшипников должны проработать без появления первых признаков усталости металла.
Полезно иметь в виду, что практически значительная часть подшипников будет иметь фактическую долговечность значительно более высокую, чем расчетная . Это обстоятельство следует учитывать в первую очередь при выборе желаемой долговечности подшипника и не назначать ее чрезмерно большой.
Вычисления по формулам (4) и (5) можно не выполнять, а определять L h по таблицам

Таблица 1


Таблица 2


Подбор подшипника для заданных условий работы начинают с выбора, типа подшипника. Во многих случаях эта задача не имеет однозначного решения и приходится выполнять расчеты для нескольких типов подшипников и лишь после их окончания делать окончательный выбор, ориентируясь не только на габариты подшипникового узла, соображения долговечности, но и учитывая требования экономичности

На первой стадии расчета при выборе типа подшипника, помимо величины и направления нагрузки и требуемой долговечности, учету подлежат следующие факторы: характер нагрузки (постоянная, переменная, вибрационная или ударная), состояние окружающей среды (влажность, запыленность, наличие паров кислот и т. п.) и ее температура, необходимость обеспечения высокой точности вращения и жесткости подшипникового узла. Некоторые из указанных факторов учитываются коэффициентами, входящими в величину приведенной нагрузки, другие непосредственно влияют на выбор типа подшипника или конструкцию подшипниковых узлов

В отношении стоимости подшипников надо иметь в виду следующее: дешевле других шариковые радиальные подшипники. Так, например, роликовые конические подшипники легкой серии дороже шариковых той же серии примерно на 30-50%. Для подшипников средней серии различие в стоимости указанных типов подшипников меньше и составляет примерно 20-35%. Резко возрастает стоимость подшипников с повышением класса точности; так если принять за единицу стоимость подшипника класса 0, то стоимость подшипника класса 6 составит примерно 1,2, а класса 5-1,5. Эти данные можно рассматривать как средние для всех типов подшипников, кроме роликовых конических, для них указанные отношения стоимостей составляют соответственно 1,5 и 1,8

При подборе подшипников возможны следующие варианты последовательности расчета:
1.Намечают тип подшипника и схему установки подшипников на данном валу.
2.Определяют радиальную и осевую нагрузки подшипника.
3.С учетом условий нагружения подшипника определяют его приведенную нагрузку.
4.Задаются желаемой долговечностью подшипника (при выборе величины L h можно пользоваться таблицей)

Рекомендованные значения расчетной долговечности подшипников для различных типов машин

Примеры машин и оборудования Долговечность, L h
Приборы и аппараты, используемые периодически: демонстрационная аппаратура, механизмы для закрывания дверей, бытовые приборы 500
Неответственные механизмы, используемые в течение коротких периодов времени: механизмы с ручным приводом, сельскохозяйственные машины, подъемные краны в сборочных цехах, легкие конвейеры 4000 и более
Ответственные механизмы, работающие с перерывами: вспомогательные механизмы на силовых станциях, конвейеры для поточного производства, лифты, нечасто используемые металлообрабатывающие станки 8000 и более
Машины для односменной работы с неполной нагрузкой: стационарные электродвигатели, редукторы общего назначения 12000 и более
Машины, работающие с полной загрузкой в одну смену: машины общего машиностроения, подъемные краны, вентиляторы, распределительные валы Около 20000
Машины для круглосуточного использования: компрессоры, насосы, шахтные подъемники, стационарные электромашины, судовые приводы 40000 и более
Непрерывно работающие машины с высокой нагрузкой: оборудование бумажных фабрик, энергетические установки, шахтные насосы, оборудование торговых морских судов 100000 и более

По формуле (2) или (3) определяют требуемую динамическую грузоподъемность подшипника.
Выбирают конкретный типоразмер подшипника, который имеет динамическую грузоподъемность не ниже требуемой.
При этом надо иметь в виду, что даже небольшое уменьшение динамической грузоподъемности по сравнению с требуемой приводит к резкому снижению расчетной долговечности (см. формулы (4), (5).
При выборе подшипника должен быть учтен необходимый по условию прочности диаметр вала . (Встречаются случаи, особенно если угловая скорость вала сравнительно велика, когда для обеспечения требуемой долговечности подшипника приходится увеличивать диаметр вала по сравнению с необходимым по условию прочности).
Уточняют нагрузки подшипника и по табличному значению динамической грузоподъемности определяют расчетную долговечность. Если окажется, что она значительно отличается от требуемой, выбирают подшипник другого типоразмера и повторяют расчет.
Назначают класс точности подшипника с учетом требований к точности вращения вала. При отсутствии специальных требований принимают класс точности 0

Выбор подшипника по заданной долговечности

Применение данного варианта подбора подшипников связано с тем, что в начале расчета не всегда есть возможность определения радиальной, осевой и приведенной нагрузок подшипника. Это обстоятельство объясняется, во-первых, невозможностью точного определения положения точек приложения радиальных реакций подшипников; во-вторых, некоторые коэффициенты, входящие в формулу для определения приведенной нагрузки, зависят от конкретного типоразмера подшипника, т. е. они не известны на первой стадии расчета

В этом варианте предварительно выбирают не только тип подшипника, но и задаются его серией и размером. Затем составляют эскиз, на основе которого определяют нагрузки подшипника, вычисляют приведенную нагрузку и по значению динамической грузоподъемности определяют расчетную долговечность. Полученную таким путем величину L h сравнивают с желаемой или рекомендуемой (см. таблицу) долговечностью. В случае неудовлетворительного результата изменяют тип, серию или размер подшипника, а иногда даже схему установки подшипников и повторяют расчет.
Так например, для быстроходных и промежуточных валов зубчатых редукторов можно рекомендовать применение подшипников средней серии, а для тихоходных - легкой

Приведенная нагрузка радиального или радиально-упорного подшипника представляет собой условную расчетную нагрузку, которая при приложении ее к подшипнику обеспечивает такую же его долговечность, которую он будет иметь при действительных условиях нагружения.
Для упорных подшипников определение аналогично, но приведенной является условная осевая нагрузка.
Для радиальных и радиально-упорных подшипников (за исключением роликовых радиальных) приведенную нагрузку определяют по формуле (6)

Q = (XK k R + YA)K 6 K T , - осевая нагрузка;
X - коэффициент радиальной нагрузки;
Y - коэффициент осевой нагрузки;
К к - коэффициент вращения (кинематический коэффициент);
К 6 - коэффициент безопасности (коэффициент динамичности) - см. табл. 4;
К т - температурный коэффициент

Коэффициент безопасности (коэффициент динамичности)

Характер нагрузки на подшипник К 6 Примеры использования
1,0 Ролики ленточных конвейеров
Легкие толчки. Кратковременные перегрузки до 125% от номинальной (расчетной) нагрузки 1,0 – 1,2 Прецизионные зубчатые передачи, металлорежущие станки (кроме строгальных и долбежных), блоки, электродвигатели малой и средней мощности, легкие вентиляторы и воздуходувки
Умеренные толчки. Вибрационная нагрузка. Кратковременная перегрузка до 150% от номинальной (расчетной) нагрузки 1,3 – 1,5 Буксы рельсового подвижного состава, зубчатые передачи 7-й и 8-й степеней точности, редукторы всех конструкций
То же, в условиях повышенной надежности 1,5 – 1,8 Центрифуги, мощные электрические машины, энергетическое оборудование
Нагрузки со значительными толчками и вибрацией. Кратковременные перегрузки до 200% от номинальной (расчетной) нагрузки 1,8 – 2,5 Зубчатые передачи 9-й степени точности. Дробилки и копры, кривошипно-шатунные механизмы, валки прокатных станов, мощные вентиляторы и эксгаустеры
Нагрузки с сильными ударами и кратковременные перегрузки до 300% от номинальной (расчетной) нагрузки 2,5 – 3,0 Тяжелые ковочные машины, лесопильные рамы, рабочие рольганги у крупносортных станов, блюмингов и слябингов

Если внутреннее кольцо подшипника вращается по отношению к направлению нагрузки, то К н = 1,0; в случае, если оно неподвижно по отношению к нагрузке, К н = 1,2
Значения температурного коэффициента К т следующие:
- рабочая температура подшипника, °С: 100; 125; 150; 175; 200; 250;
- температурный коэффициент К т 1,0; 1,05; 1,10; 1,15; 1,25; 1,40.
Величины коэффициентов X и Y приведены в подшипниковых таблицах. Для радиальных шариковых подшипников и для всех радиально-упорных подшипников эти коэффициенты зависят от отношения A/R и коэффициента е . Величина е , а также и Y для радиальных и радиально-упорных шарикоподшипников с номинальным углом контакта β ≤ 15° выбирается в зависимости от отношения А/ С 0 , где С 0 - статическая грузоподъемность подшипника

Для радиальных роликовых подшипников величину Q вычисляют по формуле
Q = RК к К т K 6 (7)
Для упорных подшипников
Q = АК б К т (8)

Следует иметь в виду, что для однорядных радиальных и радиально-упорных шарикоподшипников, а также однорядных конических роликоподшипников осевые усилия не оказывают влияния на величину приведенной нагрузки, пока отношение A/R не превысит
определенной величины е .
В двухрядных радиально-упорных подшипниках приведенная нагрузка зависит от величины осевой силы при любом ее значении; в случае, если A/R > е , в этих подшипниках работает лишь один ряд тел качения.
При выборе угла контакта подшипника следует стремиться к тому, чтобы отношение A/R было по возможности близким к величине е .
Осевые нагрузки, действующие на радиально-упорные подшипники, определяют с учетом схемы воздействия внешних сил, зависящих от выбранного относительного расположения подшипников (рис. 1 а, б )


Осевая нагрузка на каждый из подшипников может быть определена по следующим формулам, полученным при условии отсутствия осевой игры и преднатяга

Здесь S I и S II - осевые составляющие от радиальных нагрузок, приложенных соответственно к подшипникам I и II.
Их величины определяют по формулам:
S = 0,83 eR - для конических роликоподшипников;
S = eR - для радиально-упорных шарикоподшипников

Для радиально-упорных шариковых и роликовых подшипников с углом контакта β ≥ 18° величины е приведены в подшипниковых таблицах.
Для шарикоподшипников величина е может быть определена по формулам:
при β = 12°

при β = 15°

или найдена по графику
График для определения величины е для радиально-упорных шариковых подшипников



Радиальная реакция подшипника считается приложенной к валу в точке пересечения нормалей, проведенных к серединам контактных площадок. Расстояние а между этой точкой и торцом подшипника (см. рис. 1.6 ) приближенно может быть определено по следующим формулам:

для однорядных радиально-упорных шарикоподшипников

для двухрядных радиально-упорных шарикоподшипников

для однорядных конических роликоподшипников

для двухрядных конических роликоподшипников

Величины ширины В и монтажной высоты Т подшипника, а также диаметров d и D берутся из подшипниковых таблиц

Осевая грузоподъемность радиальных роликоподшипников с короткими цилиндрическими роликами

Подшипники типов 12000, 42000, 92000, 52000 и 62000, имеющие бортики на наружных и внутренних кольцах, способны воспринимать непостоянно действующие осевые нагрузки (сравнительно небольшой величины). В отличие от шарикоподшипников и роликоподшипников с бочкообразными и коническими роликами у подшипников с цилиндрическими роликами осевая нагрузка в определенных допустимых пределах не вызывает уменьшения долговечности.
Допускаемую осевую нагрузку (в Н) для подшипников серий 100, 200, 300 и 400 можно определить по формуле
А доп = K a С 0 [ 1,75 - 0,125n К в (D - d)]
Для подшипников серий 500 и 600 следует пользоваться формулой
А доп = К а С 0 ,
где С 0 -допустимая статическая нагрузка, Н;
n - наибольшая частота вращения, об/мин;
D - наружный диаметр подшипника, мм;
d - внутренний диаметр подшипника, мм;
К а и К в - коэффициенты, принимаемые по следующим данным

Значения коэффициента К а

Условия работы подшипника Смазка Пример установки К а
Применять радиальные подшипники с цилиндрическими роликами не рекомендуется 0
Консистентная Тяговые электродвигатели 0,02
Жидкая, минеральная Коробка передач автомобилей 0,06
Жидкая, минеральная Главная передача в коробках передач автомобиля 0,1
Жидкая, минеральная Передача на задний ход в коробках автомобиля 0,2
Консистентная Блоки, кран-балки 0,2

Значения коэффициента К в

Размерная серия подшипника К в
100; 200; 500 8,5 х 10 -5
300; 600 7 х 10 -5
400 6 х 10 -5

Выбор подшипников, работающих при переменных режимах

Для подшипниковых узлов, где величины действующих нагрузок и угловые скорости изменяются во времени (например, в опорах коробок скоростей, канатных барабанов и т. п.), выбор подшипников производится по эквивалентной нагрузке Q экв и суммарному числу оборотов. Под эквивалентной нагрузкой понимается такая условная нагрузка, которая обеспечивает ту же долговечность, какую имеет подшипник в действительных условиях работы.
Приведенная нагрузка при каждом режиме определяется, как указано выше.
Если нагрузка меняется, по линейному закону от Q min до Q max , то эквивалентная нагрузка может быть определена с достаточной точностью по формуле

При более сложном законе изменения нагрузок и угловых ско­ростей для определения эквивалентной нагрузки пользуются фор­мулой


1 оборотов 2 оборотов 3 оборотов n оборотов
L - общее число оборотов, в течение которого действуют нагрузки Q 1 ; Q 2 ; Q 3 …Q n
Формула справедлива для всех типов подшипников, кроме подшипников с витыми роликами

Выбор подшипников по статической грузоподъемности

Если подшипник воспринимает нагрузку находясь в неподвижном состоянии или вращаясь со скоростью не более 1 об/мин, то его выбор производится по статической грузоподъемности вне зависимости от скорости вращения и необходимой долговечности.
Под статической грузоподъемностью С 0 (ее величина указана в таблицах для каждого типоразмера подшипника) понимают такую нагрузку на невращающийся подшипник, под действием которой суммарное остаточное перемещение (сближение колец) составляет 0,0001 диаметра тела качения.
При действии комбинированной статической нагрузки вводится понятие о приведенной статической нагрузке, которая должна вызывать такие же остаточные перемещения, как те, которые возникают при действительных условиях нагружения.
Величины приведенной статической нагрузки для радиальных и радиально-упорных, подшипников определяются как большие из двух следующих значений:
Q 0 = X 0 R + Y 0 A ,
Q o = R ,
где Х 0 - коэффициент радиальной нагрузки;
У 0 - коэффициент осевой нагрузки.
Значения Х 0 и У 0 приведены в подшипниковых таблицах. При выборе подшипника по таблицам должно выполняться неравенство
Q o ≤ C о

Грузоподъемности. Частные случаи определения эквивалентной

Подбор подшипников качения по статической и динамической

Основными критериями работоспособности подшипников качения являются долговечность по усталостному выкрашиванию и статическая грузоподъемность по пластическим деформациям. Расчет на долговечность выполняют для подшипников, вращающихся с угловой скоростью ω≥0,105 рад/с. Невращающиеся или медленно вращающиеся подшипники (с угловой скоростью ω<0,105) рассчитывают на статическую грузоподъемность.

Проверка и подбор подшипников по статической грузоподъемности.

Если подшипник воспринимает нагрузку находясь в неподвижном состоянии или вращаясь с частотой менее 1 об/мин, то подшипник выбирают по статической грузоподъемности, поскольку при указанном режиме работы исключается усталостное выкрашивание рабочих поверхностей тел и дорожек ка­чения.

Условие проверки:

Р о < С о,

где Р о - эквивалентная статическая нагрузка;

С о - статическая грузоподъемность (по каталогу на подшипники).

Под статической грузоподъемностью понимают такую статическую нагрузку, которой соответствует общая остаточная деформация тел качения и колец в наи­более нагруженной точке контакта, равная 0,0001 диаметра тела качения.

Р о = X 0 ∙F r + Y 0 ∙F a ,

где Х о и Y o - коэффициенты радиальной и осе­вой статических нагрузок

(по каталогу).

Выбор подшипников по динамической грузоподъемности для предупреждения усталостного разрушения.

Динамическая грузоподъемность и долговечность (ресурс) подшипника

связаны эмпирической зависимостью

где L-ресурс в млн. оборотах;

С - паспортная динамическая грузоподъемность подшипника - это такая постоянная нагрузка, которую подшипник может выдержать в течение одного млн. оборотов без появления признаков усталости не менее чем у 90% из опреде­ленного числа подшипников, подвергающихся испытаниям. Значения С приведе­ны в каталогах;

р - показатель степени кривой усталости (р=3 - для шариковых подшипников, р=10/3 - для роликовых.

Р - эквивалентная (расчетная) динамическая нагрузка на подшипник. Для перехода от количества млн. оборотов в ресурс в часах запишем:

L h = 10 6 ∙L/(60∙n), ч.

Для радиальных шариковых и радиально-упорных шариковых и роликовых подшипников эквивалентную нагрузку определяют по формуле:

Р = (X∙V∙F r + Y∙F a)∙K b ∙K T ,

где F r и F a - радиальная и осевая нагрузки на подшипник;

V- коэффициент вращения кольца (V =1 при вращении внутреннего кольца, V =1,2 - при вращении наружного кольца);

К б - коэффициент безопасности, учитывающий характер внешних нагрузок;

К т - температурный коэффициент;

X и Y - коэффициенты соответственно радиальной и осевой нагрузок.

Для подшипников с цилиндрическими роликами формула для определения эк­вивалентной динамической нагрузки имеет вид:

Р = F r ∙V∙K b ∙K T .

Значения коэффициентов X и Yберут в зависимости от значения отношения F a / V∙F r . Осевая сила не оказывает влияния на величину эквивалентной нагруз­ки до тех пор, пока величина отношения не превысит определенного значения коэф-фициента влияния осевого нагружения e . Поэтому при F a /V∙F r ≤ e расчет ведут на действие только радиальной нагрузки, т.е. X=l, Y=0 . Если F a /V∙F r >e, то X и Y берут в справочниках для конкретного подшипника. Нужно отметить, что коэффициент е для роликовых конических и шариковых радиально-упорных подшипников с углами контакта α>18° постоянен для конкретного подшипника независимо от нагрузки, а для шариковых однорядных подшипников с углом контакта 18° и меньше выбирается в зависимости от соотношения F x /C 0 . Здесь С о - статическая грузоподъемность подшипника.

В радиально упорном подшипнике от действия радиальной силы возникает дополнительная осевая нагрузка S. Ее значение для шариковых радиально-упорных подшипников определяется S=e∙F r , а для конических роликоподшипников - S=0,83∙e∙F r . Выше отметили, что радиально-упорные подшипники устанавли­вают попарно. Существует несколько схем установки. Рассмотрим наиболее часто встречающуюся схему - установку подшипников с осевой фиксацией «враспор».