Коническая передача с круговым зубом расчет. Реферат: Конические зубчатые передачи

Разработка компьютерных программ для Проектирования конических пар с Круговым зубом.

В Ремонтном (Единичном) производстве Конических пар с Круговым и Гипоидным зубом, когда за основу берутся имеющ иеся, но уже изношенные, поврежденные и вышедшие из строя пары, расчет и определение Геометрических параметров не требует проведения специальных утомительных расчетов на прочность, на несущую способность, эксплуатационную стойкость. Все это, в свое время, еще на стадии проектирования Агрегатов и Машин, для которых они предназначались, уже было проведено. Поэтому не стоит «заморачиваться» и терять на это время. Все ограничивается подбором соответствующего материала для пар и видом их термической обработки. А это решается просто - Хочешь попрочнее, выбирай соответствующий материал, цементируй, азотируй, подвергай закалке. Не требуется - применяй обычную рядовую конструкционную сталь. А порою вообще выбор материала ограничивается возможностями предприятия на текущий момент - хотелось бы лучше, да не из чего. Просто стоит первоочередная задача - Быстро и точно воспроизвести параметры пары и качественно изготовить её.

Так же в Ремонтном производстве решается вопрос применения режущего формообразующего инструмента (Зуборезных головок) используемого для нарезки Конических пар. Применяют тот инструмент, коим располагают. Поэтому в расчетах Геометрических параметров инструмент так же можно не принимать во вним ание. Он, конечно же, будет рекомендован программой, но окончательно определен и принят уже при дальнейших расчетах соответствующих Карт наладок.

Итак, преимущество Наших программ: Они не требуют для работы с ними предварительного обучения, с привлечением соответствующих специалистов. Программы во время диалога, введения исходных данных, все время корректируют действия пользователя, подсказывая границы допустимых значений, что не позволяет заводить некорректные значения, приводящие в конечном итоге к абсурду и к возвращению в начало расчетов , как это происходит в иных предлагаемых программах. В них нет лишних, как было заявлено выше, исходных данных, что отнимает массу драгоценного времени и в конечном итоге запутывает и не дает необходимых результатов (Уводит расчеты в сторону). В то же время Наши программы выдают больший окончательный расчетный объем информации, в том числе по компоновочным, монтажным параметрам рассчитываемых Конических пар с Круговым и Гипоидным зубом. Что имеет для их изготовления и работоспособности немаловажное значение.

Программы для проектирования Конических пар

с Круговым зубом Форм №1 и №2.

Указанные программы допускают при проектировании вводить п оправки, учитывающие Западные стандарты на зубчатые пары. Что позволяет производить восстановление и расчет, от любых изношенных и повреждённых зубчатых пар, всех необходимых для их изготовления геометрических параметров.

Форма №1

Пример расчёта программой:



Чертежи конических зубчатых колес

Конические зубчатые колеса (см. рис. 8.5, д, е ), как и цилиндрические, вычерчиваются условно (рис. 8.11). При этом общие правила выполнения чертежей цилиндрических зубчатых колес, изложенные в предыдущем параграфе, действуют и в случае вычерчивания конических прямозубых колес. Размеры элементов этих колес подсчитывают по тем же формулам, что и для цилиндрических колес. Однако диаметры, модуль, высота головки и ножки зуба конического зубчатого колеса переменны (рис. 8.11). Поэтому за диаметр делительной окружности принимают максимальное его значение. Значение модуля при подсчетах также берут наибольшее (на внешнем дополнительном конусе).

Рис. 8.11.

ГОСТ 19325–73 устанавливает, что основой для подсчета размеров конических прямозубых колес является делительный конус . По вершинам зубьев проходит конус вершин, а по впадинам зубьев – конус впадин. Кроме того, могут быть два дополнительных делительных конуса – внешний и внутренний. Образующие этих конусов расположены под прямым углом к образующей делительного конуса.

Для выполнения чертежа конического прямозубого колеса нужно знать внешний окружной модуль т е, число зубьев шестерни z. Если рассматриваются два зубчатых колеса, находящихся в зацеплении, то числа зубьев обозначаются соответственно z1 и z2.

В данном примере эти величины взяты следующие: т е = 3 мм; z1 = 20 (шестерни); z2 = 40 (колеса); диаметр вала d a = 20 мм.

Прежде чем приступить к вычерчиванию, нужно подсчитать основные параметры колеса.

Диаметр делительной окружности колеса определяем по формуле d 2 = т ez 2. В данном примере d 2 = 3 40 = 120 мм. Высота головки зуба h a берется равной модулю (внешнему): h a = т е = 3 мм.

Высота ножки зуба hr берется равной 1,2 модуля: hr = = l,2me= 1,2-3 = 3,6 мм.

Диаметр делительной окружности шестерни (составляющей пару с изображаемым колесом) d 1 = т еz1 = 3 20 = 60 мм.

После подсчета основных параметров приступают к вычерчиванию фронтального разреза колеса. Построение выполняют в такой последовательности (рис. 8.12).


Рис. 8.12.

Вычерчивают два делительных конуса с общей образующей (рис. 8.12, а ). Конус большего диаметра (d 2 =120 мм) принадлежит колесу меньшего диаметра (d 1 = 60 мм) – шестерне. К основанию делительного конуса колеса проводят две линии, расположенные под прямым углом к образующим конуса В результате получают внешний дополнительный конус колеса.

Вдоль образующей этого дополнительного конуса откладывают от точки пересечения ее с образующей делительного конуса размер высоты головки h a (в нашем примере 3 мм) и размер высоты ножки h f зуба, проводят через полученную точку прямую под углом δa (угол конуса вершин), получая конус вершин (рис. 8.12, б ). Отложив размер высоты ножки зуба (в нашем примере 3,6 мм) вдоль образующей дополнительного конуса, соединяют полученную точку с вершиной делительного конуса, получая конус впадин колеса.

По образующей делительного конуса колеса откладывают размер длины зуба b, который можно подсчитать по соотношению b = (6÷8 )т е, приведенному в табл. 8.1. В нашем примере возьмем коэффициент равным 6 (колесо стальное), получим b = 6 т е = 6 3 = 18 мм.

Определяют толщину обода венца δ0 из соотношения, приведенного в табл. 8.1: δ0 ≈ (2,5÷4)те.

Для стального колеса берем коэффициент 2,5. Получаем δ0 = 2,5т е = 2,5 3 = 7,5 мм. Откладываем этот размер вдоль образующей дополнительного конуса и проводим вертикальную линию (рис. 8.12, в).

По соотношениям, приведенным в табл. 8.1, подсчитываем диаметр d CT и длину ступицы колеса, вычерчивая ее по этим размерам (рис. 8.12, в ). Показывают в ступице отверстие для вала, диаметр которого d B = 20 мм.

Вычерчивают вид слева колеса.

В соответствии с ГОСТ 2.402–68 на нем показывают для конических колес лишь две окружности зубчатого венца: окружность вершин зубьев – сплошной основной линией и делительную окружность – штрихпунктирной тонкой линией (рис. 8.12, а ).

В соответствии с ГОСТ 2.405–75 на рабочих чертежах конических зубчатых колес часть размеров проставляют на изображениях, а часть – в таблице параметров (рис. 8.13).

На изображениях наносят диаметр большего основания конуса вершин (внешний диаметр вершин зубьев). На рис. 8.13 этот размер равен 79,3 мм. Проставляют размер от базовой поверхности (торца ступицы) до большего основания конуса вершин (размер 21,64 мм). Указывают размеры двух углов: угол конуса вершин (угол 27°22" на рис. 8.13) и угол внешнего дополнительного конуса (угол 65°46"). Если зубчатое колесо имеет внешний дополнительный конус, то указывают ширину зубчатого венца (размер 26 мм). Всегда указывают размер базового расстояния, т.е. размер между вершиной делительного конуса и базовой плоскостью, измеренный по геометрической оси колеса (размер 100 _0,2з мм на рис. 8.13). Указывают размеры фасок или радиусы скруглений на кромках зубьев.


Рис. 8.13.

В таблицу параметров вносят помимо модуля число и тип зубьев, угол делительного конуса δ (угол 24°13"40") и угол конуса впадин δf (угол 21°66"). Сведения о типе зубьев помещают в таблице параметров, потому что кроме прямых могут быть косые и круговые зубья с эвольвентными и другими профилями.

Во второй части таблицы параметров помещают данные для контроля колеса, а в третьей – справочные данные.

На соответствующих изображениях наносят обозначения шероховатости рабочих поверхностей зубьев и поверхностей вершин и впадин. Кроме того, указывают предельные отклонения формы и расположения поверхностей.

Из рис. 8.13 видно, что вершины делительного конуса и конуса вершин не совпадают. Смещение их обеспечивает зазор постоянной величины по всей длине зубьев сопряженных колес, что делает передачу более плавной. На учебных чертежах этот зазор допускается не показывать.

  • Здесь и в дальнейшем предполагается совпадение начального конуса с делительным.

Лекция №8

Конические колеса применяют в передачах с пересекающимися валами. Конические колеса выполняют с прямыми, косыми, круговыми и другими криволинейными зубьями. В настоящее время наибольшее распространение получили колеса конические с круговыми зубьями. Прямозубые колеса уместно применять при невысоких окружных скоростях (до 8 м/с). При высоких скоростях целесообразно применять колеса с круговыми зубьями как обеспечивающие более плавное зацепление, большую несущую способность и более технологичные.

Недостатки конических передач:

1) сложность изготовления;

2) сложность регулировки пятна контакта зубьев;

3) относительно низкий К.П.Д. (h к = 0,94…0,97).

Последнее объясняется тем, что при несовпадении вершин начальных конусов колес резко увеличивается скольжение в контакте зубьев. В связи с этим в конструкции редуктора должна быть предусмотрена возможность регулировки зацепления конических колес.

Элементы геометрического расчета

Угол между осями валов S , может быть любым, но наибольшее распространение получил угол S =90 0 . Очевидно, что S=d 1 +d 2 , где d 1 и d 2 – углы делительных конусов шестерни и колеса соответственно.

Внешнее конусное расстояние R e определяет габариты передачи (рис. 8.1).

Рабочая ширина зубчатого венца b w может быть выражена формулой

b w =y bd d m1 =y bR R e ,

где y bd – коэффициент ширины шестерни относительно её делительного диаметра, – коэффициент ширины зубчатого венца относительно внешнего конусного расстояния, d m – делительный диаметр в среднем сечении.

Вместо начальных и делительных цилиндров цилиндрических колес в конических колесах вводят понятия - начальный и делительный конуса, которые обладают теми же свойствами, что и делительные и начальные цилиндры. Все размеры зубчатого колеса определяются по наружному торцу:

h ae = m te – внешняя высота головки зуба;

h fe = 1,2m t e – внешняя высота ножки зуба;

m te – окружной модуль на внешнем торце;

d f – угол конуса впадин зубьев;

d a – угол конуса выступов зубьев;

d e =m te z – диаметр внешней делительной окружности;

d ae = d e +2h a cosd – внешний диаметр окружности выступов;

d fe = d e -2h f ·cosd – внешний диаметр окружности впадин.

Под диаметром делительной окружности конического зубчатого колеса понимают диаметр основания делительного конуса колеса d e = m te z=2R e sinδ, откуда

Размеры зуба по длине различны, поэтому вводятся понятия о диаметре и модуле в среднем сечении:

, где R m – среднее конусное расстояние.

Передаточное число , т.к. d e 1 = 2R e sind 1 и d e 2 = 2R e sind 2 , то. Для ортогональных передач, в которых S =90 0 , sind 1 = cosd 2 и U=tg d 2 = ctgd 1 .


Усилия в зацеплении

Усилия в зацеплении рассмотрим на примере конической прямозубой передачи. Условно считаем, что все силы приложены в середине зуба на диаметрах d m 1 и d m 2 (см. рис. 8.3). В сечении плоскостью “n-n ” нормальной поверхности зуба действует полное усилие F n , которое раскладывается на окружное усилие F t и усилие F r " . В свою очередь усилие F r " во фронтальной плоскости раскладывается на F a (осевое усилие) и F r (радиальное усилие). Для определения всех сил исходной является

через него определяются усилия

Для колеса направление сил противоположно, при этом

Эквивалентные колеса и определение их параметров

Размеры поперечных сечений зуба конического колеса изменяются пропорционально расстоянию этих сечений от вершины конуса. Все поперечные сечения зуба геометрически подобны. При этом удельная нагрузка q (рис. 8.4) распределяется неравномерно по длине зуба. Она изменяется в зависимости от величины деформации и жесткости зуба в различных сечениях по закону треугольника, вершина которого совпадает с вершиной делительного конуса. Контактные и изгибные напряжения одинаковы по всей длине зуба. Это позволяет вести расчет на прочность по любому из сечений. Практически удобно принять за расчетные сечения среднее сечение зуба с нагрузкой q ср .

Для расчета на прочность конические колеса заменяют эквивалентными цилиндрическими, размеры которых определяются по развертке дополнительного конуса j , в среднем сечении (рис 8.5), при этом m tv = m tm .

Диаметр эквивалентного колеса

Санкт-Петербургский ГосударственныйТехнологический Институт

(Технический Университет)

Кафедра теоретических основхимического машинострония

Конические зубчатые передачи

Санкт-Петербург


Введение

3. Передаточное число

4. Приведение прямозубого коническогоколеса к эквивалентному прямозубому цилиндрическому

Заключение


Введение

Конические зубчатые колеса применяют в передачах между валами, оси которых расположены под углом. Основное применение имеют передачи с пересекающимися под углом 90° осями, т. е. ортогональные передачи, которые рассматриваются ниже. Передачи с межосевым углом, не равным 90°, применяют редко из-за сложности форм и технологии изготовления корпусных деталей, несущих эти передачи, хотя для изготовления самих колес межосевой угол передачи не имеет значения. Пересечение осей валов затрудняет размещение опор. Одно из конических колес, как правило, располагают консольно. При этом увеличивается неравномерность распределения нагрузки по длине зуба. В коническом зацеплении действуют осевые силы, наличие которых усложняет конструкцию опор. Все это приводит к тому, что по опытным данным нагрузочная способность конической прямозубой передачи составляет лишь около 0,85 цилиндрической. Несмотря на отмеченные недостатки, а также то, что конические колеса сложнее, чем цилиндрические в изготовлении и монтаже, конические передачи имеют, широкое применение, поскольку по условиям компоновки механизмов довольно часто необходимо располагать валы под углом. Конические колеса выполняют с прямыми, тангенциальными, круговыми и другими криволинейными зубьями


Прямозубые конические колеса следует применять при невысоких окружных скоростях (до 2...3 м/с) как наиболее простые в монтаже (допустимо до 8 м/с). При более высоких скоростях целесообразно применять колеса с круговыми зубьями, как обеспечивающие более плавное зацепление, меньший шум, большую несущую способность и более технологичные. Зубья обрабатывают на специальных станках для нарезания конических колес. В массовом и крупносерийном производстве в связи с возможностью компенсации при нарезании зубьев последующих закалочных деформаций конические колеса не шлифуют, а ограничиваются притиркой. В конических передачах для обеспечения при сборке правильного контакта зубьев предусматривают возможность осевой регулировки зубчатых колес. Несущая способность конических зубчатых передач с повышенным перекосом осей (от консольного расположения, недостаточной жесткости валов и корпусов) может быть несколько повышена даже по сравнению с передачами, имеющими круговой зуб, выполнением зубьев двояковыпуклыми и вогнутыми. Обе стороны зуба шестерни нарезают выпуклыми, а колеса - вогнутыми. Выигрыш получается вследствие того, что удельная жесткость пары зубьев не меняется по длине зубьев и пятно контакта при деформации валов не смещается.


1. Геометрические параметры конических зубчатых передач

Геометрические расчеты конических колес аналогичны расчетам цилиндрических. Зубья конических колес образуются обкатыванием по плоскому колесу с прямолинейным профилем зубьев аналогично тому, как зубья цилиндрических колес образуются обкатыванием по рейке. Число зубьев плоского колеса(может получиться дробным). Вместо начальных и делительных цилиндров цилиндрических колес в конических колесах вводятся понятия: начальный и делительный конусы, которые, как правило, совпадают, так как для конических колес угловую коррекцию практически не применяют. В качестве торцовых сечений рассматривают сечения поверхностями дополнительных конусов, т. е. Конусов, оси которых совпадают с осьюколеса, а образующие перпендикулярны к образующим делительного конуса. Используются понятия внешнего и внутреннего дополнительных конусов (ограничивающих зубчатый венец) и среднего дополнительного конуса. Действительные профили зубьев конических колес весьма близки к профилям воображаемых эквивалентных цилиндрических колес с радиусами делительных окружностей, равными длинам образующих дополнительных конусов. Зубья конических колес по признаку изменения размеров сечений по длине выполняют трех форм.

Осевая форма I - нормально понижающиеся зубья; вершины делительного и внутреннего конусов совпадают (а). Эту форму применяют для конических передач с прямыми и тангенциальными зубьями, а также ограничено для передач с круговыми зубьями при и

Осевая форма II(б) - вершина внутреннего конуса располагается так, что ширина дна впадины колеса постоянна, а толщина зуба по делительному конусу растет с увеличением расстояния от вершины. Эта форма позволяет обрабатывать одним инструментом сразу обе поверхности зубьев колеса. Поэтому она является основной для колес с круговыми зубьями, широко применяется в массовом производстве.

Осевая форма III (в) -равновысокие зубья; образующие делительного и внутреннего конусов параллельны. Эту форму применяют для круговых зубьев при , в частности при средних конусных расстояниях 75-750 мм. Формы II и III получают смещением вершины конуса впадин и вершины делительного конуса (б, в). Области применения подробнее см. ГОСТ 19326-73.


У конических колес удобно измерять, а потому и задавать размеры зубьев на внешнем дополнительном конусе. В зубчатых колесах с зубьями формы I обычно оперируют окружным модулем на внешнем торце. В зубчатых колесах с зубьями формы II и III преимущестенно оперируют нормальным модулем на середине ширины зубчатого венца. Круговые зубья нарезают немодульным инструментом, позволяющим обрабатывать зубья в некотором диапазоне модулей. Поэтому допускается применять передачи с нестандартными и дробными модулями.

Соотношение между модулями и следующее:

где - внешнее конусное расстояние Угол наклона линии зуба выбирают, учитывая, что увеличение улучшает плавность зацепления, но при этом возрастают усилия. При круговых зубьях преимущественно применяют = 35°, а при тангенциальных 20...30°, обычно угол выбирают кратным 5°. Минимально допустимые числа зубьев приведены в таблице:

.

Для уменьшения шума рекомендуют применять притирку и выбирать некратные числа зубьев колес. Для зубчатых передач с твердостью рабочих поверхностей зубьев шестерни и колеса число зубьев шестерни рекомендуют выбирать по следующим графикам в зависимости от внешнего делительного диаметра шестерни , при твердости и < 350 НВ выбранные значения увеличивают в 1,6 раза; при и увеличивают в 1,3 раза. Основные геометрические соотношения в конических передачах приведены далее. Корригирование конических зацеплений по сравнению с цилиндрическими имеет следующие особенности. Область целесообразного применения высотной коррекции конических зацеплений расширена. Наоборот, угловая коррекция, при которой сумма смещений исходного контура для колес не равна нулю, весьма трудно осуществима из-за необходимости сохранить заданный межосевой угол, поэтому ее практически не применяют. Для конических зацеплений, в отличие от цилиндрических, при u>2,5 удобно применять так называемую тангенциальную коррекцию, заключающуюся в утолщении зуба шестерни и соответственном утонении зуба колеса. Тангенциальная коррекция конических колес не требует специального инструмента, так как ее получают благодаря разведению резцов, обрабатывающих противоположные стороны зубьев. Для цилиндрических колес тангенциальную коррекцию не применяют, так как она требует специального инструмента. Основные размеры конических зубчатых колес с прямыми, тангенциальными и круговыми:





2. Силы в конических зубчатых передачах

Окружная составляющая сил, отнесенная к средней по ширине венца делительной окружности ,


Прямозубые конические Колеса

В связи с тем, что в конических колесах с прямыми и непрямыми зубьями не применяют угловую коррекцию, угол зацепления равен углу профиля инструмента. Сила, раздвигающая зубья действует в плоскости yz. По аналогии с цилиндрическими колесами



Составляющие сил вдоль осей у и z (б - угол начального конуса) соответственно равны:

Суммарная, нормальная к оси вала сила (в плоскости ху) :

Конические колеса с тангенциальными и криволинейными зубьями.

Удобно рассматривать два расчетных случая, различающихся направлением отдельных составляющих сил на зубьях.

Случай 1. Сила нормальная к линии зуба (лежащая в плоскости, касательной к делительному конусу), имеет проекцию на образующую делительного конуса, направленную от его вершины.

Сила

Сила, раздвигающая зубья, нормальная к образующей делительного конуса (по аналогии с цилиндрическими колесами):

Составляющая силы , направленная вдоль образующей делительного конуса,

Составляющие силы по осям координат у и z определяются как алгебраическая сумма проекций сил и на эти оси:


Случай 2. Сила , нормальная к линии зуба, имеет проекцию на образующую начального конуса, направленную к его вершине. В связи с этим в предыдущих формулах вторые члены меняют знаки на обратные. Направление осевой силы к вершине конуса нежелательно в связи с возможностью заклинивания передачи при значительных осевых зазорах в подшипниках. Нетрудно себе представить, что при радиальная сила на шестерне по абсолютной величине равна осевой силе на колесе, а осевая сила на шестерне равна радиальной силе на колесе.

При определении сил, действующих на валы и оси, с учетом сил трения исходным является положение о том, что суммарная сила взаимодействия между зубьями наклонена в плоскости скольжения под углом трения относительно общей нормали к поверхности зубьев. Можно использовать формулы с увеличенными на углы трения углами зацепления. При этом для прямозубых колес получают точные зависимости, а для непрямозубых - приближенные, но близкие к точным.

3. Передаточное число

Как и у цилиндрических передач:

Кроме того, выразив d 1 и d 2 через конусное расстояние Rи углы делительных конусов б 1 и б 2 , получим и при сумме

∑= б 1 + б 2 = 90 0


4. Приведение прямозубого конического колеса к эквивалентному прямозубому цилиндрическому

Параметры эквивалентных колес используют при расчетах на прочность. Форма зуба конического колеса в нормальном сечении дополнительным конусом такая же, как у цилиндрического прямозубого колеса. Эквивалентное цилиндрическое колесо получим как развертку дополнительного конуса - ограниченного углом . Диаметры эквивалентных колес

Выражая диаметры через zи т, запишем или числа зубьев эквивалентных колес , .

(Допускают применение нестандартных модулей, если это не связано с применением специального инструмента)


Заключение

Знание изложенного материала позволит правильно рассчитать зубчатую передачу с коническими колесами. Нельзя забывать, что конические колеса сложнее, чем цилиндрические в изготовлении и монтаже, поэтому их нужно применять только там, где это оправдано конструктивными особенностями привода.

В итоге, не будет лишним кратко изложить достоинства и недостатки данной передачи, так как это основной критерий, который определяет обоснованность ее выбора в каждом конкретном случае:

Преимущества:

обеспечение возможности передачи и преобразования вращательного движения между звеньями с пересекающимися осями вращения;

возможность передачи движения между звеньями с переменным межосевым углом при широком диапазоне его изменения;

расширение компоновочных возможностей при разработке сложных зубчатых и комбинированных механизмов.

Недостатки:

более сложная технология изготовления и сборки конических зубчатых колес;

большие осевые и изгибные нагрузки на валы, особенно в связи с консольным расположением зубчатых колес.

конический зубчатый вал деталь


Список использованной литературы

1. Решетов Д. Н., Детали машин: Учебник для студентов машиностроительных и механических специальностей вузов.- 4-е изд., перераб. и доп.- М.: Машиностроение, 1989.- 496 с: ил.

2. Кудрявцев В. Н., Курсовое проектирование деталей машин: Учебник для студентов машиностроительных и механических специальностей вузов.-Л., Машиностроение, 1984, 400 с.

3. Яковенко В. А., Конспект лекций по курсу детали машин

4. Еремеев В. К., Конспект лекций по курсу детали машин

Прямозубые конические колёса применяют при невысоких окружных скоростях (до 2...3 м/с, допустимо до 8 м/с). При более высоких скоростях целесообразно применять колёса с круговыми зубьями, как обеспечивающие более плавное зацепление, меньший шум, большую несущую способность и более технологичные. Прямозубые конические передачи обеспечивают передаточное отношение до 3.

При окружных скоростях, больших 3 м/с, в конических редукторах применяют зубчатые передачи с косыми или криволинейными зубьями, которые благодаря постепенному входу в зацепление и меньшим изменением величины деформации зубьев в процессе зацепления работают с меньшим шумом и меньшими динамическими нагрузками. Кроме того, зубчатые колёса с косыми или криволинейными зубьями лучше работают на изгиб, чем прямозубые. Однако для полного контакта зубьев этих передач требуется прилегание зубьев не только по их ширине, но и по высоте, что повышает требования к изготовлению косозубых передач и колёс с криволинейными зубьями. Благодаря своим преимуществам такие передачи могут применяться при передаточных отношениях до 5 и даже выше.

Рисунок 5

а) с прямыми зубьями,б) с косыми зубьями,

в) с криволинейными зубьями,г) коническая гипоидная передача


Рисунок 6 - Основные элементы зубьев конических колёс

Конические зубчатые колёса с косыми зубьями могут работать с окружной скоростью до 12 м/с, а колёса с криволинейными зубьями - до 35-40 м/с. Наибольшее распространение получили передачи с криволинейными зубьями, нарезанными по спирали, эвольвенте (паллоидные) или окружности (круговые).Конические колёса с криволинейными зубьями могут иметь различное направление спирали. Зубчатое колесо называется правоспиральным, если со стороны вершины конуса зубья наклонены наружу в сторону движения часовой стрелки, в противном случае колесо называется левоспиральным.

Корригирование конических зубчатых колёс

Применяют в основном высотную коррекцию (корригирование) конических колёс. Также для конических колёс применяется тангенциальная коррекция, заключающаяся в утолщении зуба шестерни и утонении зуба колеса. Тангенциальная коррекция конических колёс не требует специального инструмента. Для цилиндрических колёс тангенциальную коррекцию не применяют, так как для она требует специального инструмента. На практике для конических колёс часто применяют высотную коррекцию в сочетании с тангенциальной.

Зубья конических колёс по признаку изменения размеров сечений по длине выполняют трех форм:

Рисунок 7

1.Нормально понижающие зубья. Вершины делительного и внутреннего конусов совпадают. Эту форму применяют для конических передач с прямыми и тангенциальными зубьями, а также ограниченно для передач с круговыми зубьями при mn>2 и Z = 20...100.

Рисунок 8

2. Вершина внутреннего конуса располагается так, что ширина дна впадины колеса постоянна, а толщина зуба по делительному конусу растёт с увеличением расстояния до вершины. Эта форма позволяет обрабатывать одним инструментом сразу обе поверхности зубьев колеса. Поэтому она является основой для колес с круговыми зубьями.

Рисунок 9

3. Равновысокие зубья. Образующие делительного и внутреннего конуса параллельны. Эту форму применяют для круговых зубьев при Z>40, в частности при средних конусных расстояниях 75-750 мм.