Какое напряжение зажигания в автомобиле. Неисправности системы зажигания инжекторного и дизельного двигателя, принцип работы. Бесконтактная система зажигания автомобиля

Рабочая смесь в цилиндре двигателя загорается от проскакивающей в нужный момент электрической искры. Для обеспечения своевременного воспламенения рабочей смеси предназначена система зажигания, которая бывает трех типов:

контактная;
бесконтактная (транзисторная);
электронная.
Можно сказать, что время контактной и бесконтактной систем практически ушло. В современных машинах, как правило, используется электронная система зажигания. Однако, учитывая тот факт, что многие наши соотечественники ездят на советских и старых российских автомобилях, вкратце рассмотрим принципы работы контактной и транзисторной систем зажигания. Последняя, в частности, используется на ВАЗ-2108. Что касается электронной системы зажигания, то на практике изучать ее нет необходимости, поскольку отрегулировать электронное зажигание можно только на специализированной станции технического обслуживания.

Электрическая искра в контактной системе зажигания образуется между электродами свечи зажигания в конце такта сжатия. Поскольку промежуток сжатой рабочей смеси между электродами свечи имеет высокое электрическое сопротивление, между ними должно создаваться большое напряжение — до 24 000 В: только в этом случае будет вызван искровой разряд. Кстати, искровые разряды должны появляться при определенном положении поршней в цилиндрах и чередоваться в соответствии с установленным порядком работы цилиндров. Иначе говоря, искра не должна проскакивать во время такта впуска, сжатия или выпуска.

Контактная система батарейного зажигания состоит из следующих элементов:

источников электрического тока (аккумулятора и генератора);
катушки зажигания;
замка зажигания (в него водитель вставляет ключ, чтобы завести автомобиль);
прерывателя тока низкого напряжения;
распределителя тока высокого напряжения;
конденсатора;
свечей зажигания (из расчета на один цилиндр — одна свеча);
электрических проводов низкого и высокого напряжения.
Источники электрического тока обеспечивают его подачу в систему зажигания. При запуске двигателя источником является аккумулятор. Работающий двигатель постоянно получает подзарядку от генератора.

Основное предназначение катушки зажигания (она располагается в моторном отсеке) — преобразование тока низкого напряжения в ток высокого напряжения. Когда по первичной обмотке низкого напряжения проходит электрический ток, вокруг нее создается мощное магнитное поле. После прекращения подачи тока (эту задачу выполняет прерыватель) магнитное поле исчезает и пересекает большое количество витков вторичной обмотки высокого напряжения, в результате чего в ней возникает ток высокого напряжения. Значительный рост напряжения (от 12 до требуемых 24 000 В) достигается за счет разницы числа витков в обмотках катушки.

Полученное напряжение позволяет преодолеть пространство между электродами свечи зажигания и получить электрический разряд, в результате которого образуется требуемая искра.

Примечание: В среднем зазор между электродами свечи зажигания составляет 0,5-1 мм. При необходимости его можно отрегулировать, выкрутив свечу.

При неотрегулированном зазоре между электродами свечи зажигания двигатель работает нестабильно: могут функционировать не все цилиндры. Например, из 4 цилиндров работают 3, еще 1 крутится «вхолостую» (в таких случаях говорят, что мотор троит). При этом двигатель заметно теряет мощность, а расход топлива увеличивается.

Регулируя зазор между электродами свечи, подгибают только боковой электрод. Центральный электрод подгибать запрещено, поскольку это может стать причиной появления трещин на керамическом изоляторе свечи и она станет непригодной.

Функции замка зажигания известны даже новичкам: он необходим, чтобы замкнуть электрическую цепь и завести автомобиль.

Задача прерывателя низкого напряжения — вовремя прервать подачу тока низкого напряжения на первичную обмотку катушки зажигания, чтобы в этот момент во вторичной обмотке образовался ток высокого напряжения. Образовавшийся ток поступает на центральный контакт распределителя тока высокого напряжения.

Контакты прерывателя расположены под крышкой распределителя зажигания. Подвижный контакт постоянно прижимается к неподвижному с помощью специальной пластинчатой пружины. Эти контакты размыкаются на очень маленький промежуток времени в тот момент, когда набегающий кулачок приводного валика трамблера надавливает на молоточек подвижного контакта.

Чтобы контакты не выходили из строя преждевременно, используется конденсатор, который предохраняет контакты от обгорания. Дело в том, что в момент размыкания подвижного и неподвижного контактов между ними могла бы проскакивать мощная искра, однако конденсатор поглощает практически весь электрический разряд.

Еще одна задача конденсатора состоит в том, чтобы способствовать увеличению напряжения во вторичной обмотке катушки зажигания. При размыкании подвижного и неподвижного контактов прерывателя конденсатор разряжается и создает обратный ток в катушке низкого напряжения, что ускоряет исчезновение магнитного поля. В соответствии с законами физики, чем быстрее пропадает магнитное поле в первичной обмотке, тем более мощный ток возникает во вторичной обмотке.

Эта функция конденсатора исключительно важна. Ведь если он неисправен, двигатель автомобиля может вообще не работать, так как напряжения, возникающего во вторичной обмотке, будет недостаточно для пробоя зазора между электродами свечи зажигания и, следовательно, для получения искры.

Прерыватель тока низкого напряжения и распределитель тока высокого напряжения объединены в одном корпусе и представляют собой прибор, который называется трамблер. Его основные элементы:

крышка с контактами;
тяга;
корпус вакуумного регулятора;
диафрагма вакуумного регулятора;
ротор распределителя (бегунок);
опорная пластина;
резистор;
контактный уголек;
центробежный регулятор с пластиной;
кулачок прерывателя;
подвижная пластина прерывателя;
грузик;
контактная группа;
приводной валик.
С помощью ротора и крышки ток высокого напряжения, образовавшийся в катушке зажигания, распределяется по цилиндрам двигателя (точнее, по свечам, имеющимся в каждом цилиндре). Далее ток по высоковольтному проводу поступает на центральный контакт крышки распределителя, а после этого через подпружиненный контактный уголек на пластину ротора (бегунка). Ротор вращается, и ток через небольшое воздушное пространство переходит на боковые контакты крышки трамблера. К этим контактам подведены высоковольтные провода, которые и проводят ток к свечам зажигания. Причем провода с контактами соединены в строго определенной последовательности, с помощью которой устанавливается порядок работы цилиндров двигателя внутреннего сгорания.

В большинстве случаев последовательность работы 4-цилиндровых двигателей такая: вначале рабочая смесь воспламеняется в первом цилиндре, затем в третьем, далее в четвертом и, наконец, во втором. При таком порядке нагрузка на коленчатый вал распределяется равномерно.

Ток высокого напряжения должен поступать на свечу не в тот момент, когда поршень достиг верхней мертвой точки, а немного ранее. Поршни в цилиндрах движутся с очень высокой скоростью, и если искра появится в момент нахождения поршня в верхнем состоянии, сгоревшая рабочая смесь не успеет оказать на него необходимое давление, что приведет к заметной потере мощности двигателя. Если смесь воспламенится чуть раньше, то поршень испытает наибольшее давление, следовательно — двигатель покажет максимум мощности.

Когда именно должна появиться искра? Этот параметр называется углом опережения зажигания: поршень не доходит примерно 40-60° до верхней мертвой точки, если производить замер по углу поворота коленчатого вала.

Для регулировки первоначального угла опережения зажигания корпус трамблера поворачивают до тех пор, пока не будет найден оптимальный вариант. При этом выбирают момент размыкания подвижного и неподвижного контактов прерывателя, когда они либо приближаются, либо удаляются от набегающего кулачка приводного валика трамблера. Кстати, трамблер имеет привод от коленчатого вала двигателя.

В разных режимах работы двигателя условия сгорания рабочей смеси меняются, поэтому угол опережения зажигания нуждается в постоянной корректировке. Эту задачу помогают решить два прибора: центробежный и вакуумный регуляторы опережения зажигания.

Центробежный регулятор опережения зажигания состоит из двух грузиков на осях, укрепленных на пластине приводного валика. Грузики стянуты между собой двумя пружинами. Кроме того, на них имеются штифты, которые вставлены в прорези пластины кулачка прерывателя. Главное предназначение центробежного регулятора опережения зажигания — изменение момента появления искры между электродами свечи зажигания в зависимости от того, с какой скоростью вращается коленчатый вал двигателя.

По мере повышения частоты вращения коленчатого вала грузики под действием центробежной силы расходятся в стороны и поворачивают пластину с кулачком прерывателя по направлению его вращения на определенный угол, что обеспечивает более раннее размыкание контактов прерывателя. Следовательно, опережение зажигания увеличивается.

Когда скорость вращения коленчатого вала снижается, центробежная сила также уменьшается. Под действием стяжных пружин грузики сходятся, поворачивая пластину с кулачком прерывателя в обратную сторону. Результатом является уменьшение опережения зажигания.

Для автоматического изменения опережения зажигания в зависимости от текущей нагрузки на двигатель предназначен вакуумный регулятор. Как известно, в зависимости от состояния дроссельной заслонки в цилиндры двигателя попадает смесь разного состава, соответственно, на ее сгорание требуется различное время.

Вакуумный регулятор монтируется в трамблере, причем корпус регулятора разделен диафрагмой на две полости, одна из которых сообщается с атмосферой, другая — через трубку с карбюратором (точнее, с поддроссельным пространством). При закрытии дроссельной заслонки разряжение в вакуумном регуляторе увеличивается, диафрагма, преодолевая сопротивление возвратной пружины, выгибается наружу и через специальную тягу поворачивает подвижный диск навстречу вращению кулачка прерывателя в сторону увеличения опережения зажигания. Когда дроссельная заслонка открывается, разряжение в полости уменьшается, диафрагма под воздействием пружины выгибается в обратную сторону, поворачивая диск прерывателя по ходу вращения кулачка в сторону уменьшения опережения зажигания.

На старых советских и российских машинах можно выполнить ручную регулировку зажигания с помощью октан-корректора.

Ключевым элементом системы зажигания автомобиля является свеча зажигания. На какой бы машине вы не ездили — «Мерседесе», «Жигули», «Лексусе» или «Запорожце»,- без свечей вам не обойтись. Напомним, что количество свечей соответствует числу цилиндров двигателя.

Когда ток высокого напряжения попадает от распределителя на свечу, между ее электродами проскакивает электрический разряд, воспламеняющий рабочую смесь в цилиндре. Рабочая смесь при сгорании давит на поршень, тот под силой давления движется вниз и прокручивает коленчатый вал, с которого крутящий момент передается на ведущие колеса автомобиля.

Что касается бесконтактной (транзисторной) системы зажигания, то ее основное преимущество заключается в возможности увеличения мощности напряжения, подаваемого на электроды свечи. Это заметно упрощает запуск непрогретого двигателя, а также его работу в холодное время года. Кроме того, автомобиль с бесконтактной системой зажигания является более экономичным.

Основными элементами бесконтактной системы зажигания являются:

источники электрического тока (аккумулятор и генератор);
катушка зажигания;
свечи зажигания;
датчик-распределитель;
коммутатор;
выключатель зажигания;
высоковольтные и низковольтные провода.
Характерной особенностью транзисторной системы является то, что в ней отсутствуют контакты прерывателя, вместо которых используется специальный датчик. Он посылает импульсы в коммутатор, который управляет катушкой зажигания. Катушка зажигания, как обычно, преобразует ток низкого напряжения в ток высокого напряжения.

Среди наиболее часто встречающихся неисправностей системы зажигания автомобиля первую очередь нужно отметить позднее либо раннее зажигание, перебои в одном или нескольких цилиндрах, а также полное отсутствие зажигания.

Если вы заметили, что двигатель теряет мощность и одновременно перегревается — возможно, виновато позднее зажигание. Когда потеря мощности сопровождается характерным стуком в двигателе — скорее всего, речь идет о раннем зажигании. В любом случае для решения проблемы необходимо отрегулировать момент зажигания (как говорят автомобилисты, выставить зажигание). В современных автомобилях самостоятельно это сделать практически невозможно, поэтому сразу обращайтесь на станцию технического обслуживания.

Если какой-то цилиндр работает с перебоями (мотор троит) — в первую очередь проверьте состояние свечи зажигания: возможно, на ее электродах образовался нагар, который нужно снять либо отрегулировать зазор между электродами. Кроме того, причиной неисправности свечи является наличие трещин и иных механических повреждений на керамическом изоляторе.

Примечание: Свеча — одна из тех деталей, которые редко нуждаются в замене. В среднем свеча зажигания может «пройти» несколько десятков тысяч километров, поэтому причиной подобных проблем совершенно необязательно являются неисправности свечей.

Заменить свечи зажигания может даже малоопытный автомобилист. Для этого необходимо отсоединить от них высоковольтные провода, затем специальным свечным ключом выкрутить старые свечи и вкрутить новые. Операция несложная, выполняется буквально за 10-20 мин.

Иногда трудно на глаз определить, какая именно свеча неисправна (то есть какой цилиндр работает с перебоями). Чтобы найти повреждение, поочередно отсоединяйте высоковольтные провода от соответствующих свечей путем снятия их наконечников: если перебои в работе двигателя стали более заметны — данная свеча исправна, а если работа двигателя не изменилась — значит, именно она вышла из строя. Дополнительным подтверждением неисправности свечи может являться то, что она после выкручивания из горячего двигателя будет холоднее остальных.

Случаются повреждения высоковольтного провода, вследствие чего электричество поступает с перебоями либо не подается вообще. Рекомендуется проверить состояние контакта, которым провод соединяется со свечой: бывает, что для устранения неисправности достаточно плотнее его прижать. В старых машинах с контактной системой зажигания проблема может заключаться в соответствующем гнезде крышки прерывателя-распределителя.

Если наблюдаются перебои в работе разных цилиндров — проверьте состояние центрального высоковольтного провода: есть вероятность повреждения изоляции. Возможно, это обусловлено вышедшим из строя конденсатором, плохим контактом высоковольтного провода с клеммой катушки зажигания либо гнездом крышки прерывателя-распределителя (в машинах с контактной системой зажигания). В старых автомобилях причинами могут являться обгорание контактов прерывателя, периодическое замыкание на «массу» подвижного контакта прерывателя из-за поврежденной изоляции, появление трещин на крышке трамблера, неотрегулированный зазор между контактами прерывателя.

Проблемы с искрой решаются путем обработки водовытесняющим аэрозолем распределителя зажигания и высоковольтных проводов. Такие аэрозоли в ассортименте продаются на автомобильных рынках и в специализированных магазинах. В частности, у отечественных автолюбителей пользуется популярностью аэрозоль ВД-40.

Довольно неприятным симптомом является полное отсутствие зажигания. Как правило, причина кроется в неисправностях высоковольтных или низковольтных цепей. Для их устранения придется обратиться на станцию технического обслуживания.

Внимание: В случае самостоятельного выполнения работ по техническому обслуживанию и ремонту системы зажигания при работающем двигателе не касайтесь руками элементов системы зажигания, а также не проверяйте их работоспособность «на искру». При включенном зажигании нельзя отключать от коммутатора штекерный разъем, поскольку это может привести к выходу из строя конденсатора. Запрещается прокладывать в одном жгуте высоковольтные и низковольтные провода.

Главной функцией системы зажигания в бензиновом двигателе, является подача искры на свечи зажигания во время определенного такта его работы. Система зажигания дизельного двигателя устроена по-другому, оно происходит момент, когда топливо впрыскивается в такт сжатия.

Виды

В зависимости от того, как происходит процесс образования искры, выделяют несколько систем: бесконтактная (с участием транзистора), электронная (с помощью микропроцессора) и контактная.

Важно! В бесконтактной схеме, для взаимодействия с датчиком импульсов, использован транзисторный коммутатор, выполняющий функцию прерывателя. Высокое напряжение регулирует механический распределитель.

Электронная система зажигания двигателя накапливает и распределяет электрическую энергию с помощью электронного блока управления. Ранее конструктивная особенность этого варианта позволяла электронному блоку отвечать одновременно за систему зажигания и за систему впрыска топлива. Сейчас система зажигания является элементом системы управления двигателем.

В контактной системе электрическая энергия распределяется с помощью механического устройства - прерывателя-распределителя. Дальнейшим ее распространением занимается контактная транзисторная система.

Конструкция системы зажигания

Все виды системы зажигания автомобиля разные, но все же у них есть и общие элементы, из которых образуется система:


Принцип работы

Рассмотрим подробнее распределитель зажигания, чтобы определить технологию направления электрического импульса на каждый цилиндр отдельно. Сняв крышку трамблера можно увидеть вал с пластиной в центре и расположенные по кругу медные контакты. Эта пластина и есть бегунок, он обычно пластиковый или текстолитовый и в нем стоит предохранитель. Медный наконечник с одного края бегунка по очереди касается медных контактов, раздавая электрические разряды на провода к цилиндрам в необходимое время такта работы двигателя. Пока бегунок совершает свое движение от одного контакта к другому, в цилиндрах готовится новая порция горючей смеси для воспламенения.

Важно! исключить постоянную подачу тока, в трамблер устанавливается прерыватель - контактная группа. Кулачки расположены на валу эксцентрично, и при вращении замыкают и размыкают электрическую сеть.

Необходимым условием правильной работы и эффективного сгорания смеси является произошедшее строго в определенный момент самовозгорание. Процесс возгорания очень сложен с технической точки зрения, так как в цилиндрах образуется большое количество дуговых разрядов, которые зависят от оборотов двигателя. Разряды должны быть так же равны определенным значениям: от 0,2 мдж и выше (в зависимости от топливной смеси). В случае недостаточной энергии, смесь не загорится, и появятся перебои в работе двигателя, он может не запуститься или заглохнуть. Работа катализатора так же зависит от исправности системы зажигания двигателя. Если система работает с перебоями, остатки топлива будут попадать в катализатор и догорать там, что приведет к перегреву и прогоранию металла катализатора как снаружи, так и выходу из строя внутренних перегородок. Прогоревший внутри катализатор не сможет выполнять свои функции и потребуется замена.

Возможные неисправности

Установка различных систем: контактной, бесконтактной, электронной, на современные автомобили, все же подчиняется общим правилам, поэтому можно выделить следующие основные неисправности системы зажигания:

  • нерабочие свечи;
  • не работает катушка;
  • нарушено соединение цепи (прогорание провода, окисление контакта, плохое соединение).

Для бесконтактной системы зажигания двигателя характерны также и поломки коммутатора, крышки датчика распределителя, вакуума трамблера, датчика Холла.

Внимание! Электронный блок управления сам может выйти из строя. Также к неправильной работе приведут неисправные входные датчики.

Признаки

Самыми частыми причинами поломки в системе зажигания являются:

  • установка некачественных запчастей (свечей, катушек, свечных проводов, кулачков трамблера, крышек распределителя, датчиков);
  • механические повреждения узлов деталей;
  • неправильная эксплуатация (низкокачественное топливо, непрофессиональное обслуживание).

Диагностировать неисправность системы зажигания возможно и по внешним признакам. Хотя симптомы могут быть схожи с проблемами в топливной системе и системе впрыска.

Совет! Правильнее будет диагностировать эти две системы параллельно.


Определить самостоятельно, что поломка касается именно зажигания, можно по следующим внешним признакам:

  • двигатель запускается не с первых кручений стартера;
  • на холостом ходу (иногда и под нагрузкой) работа двигателя неустойчивая, как говорят мастера - мотор «троит»;
  • приемистость двигателя снижается;
  • увеличивается расход топлива.

Если нет возможности сразу обратиться в сервис, то можно попробовать самостоятельно определить причину сбоя и отремонтировать систему зажигания, так как некоторые запчасти относятся к расходным материалам и продаются в любом магазине автозапчастей. Первым делом можно выкрутить и проверить свечи. Если электроды обгорели и между ними образовался нагар, то необходимо заменить свечи. Для работы понадобится один свечной ключ и новый набор свечей, которые подбираются по необходимым параметрам зазора и размерам резьбы.

Также в темное время суток или в закрытом гараже можно открыть капот и при пробивании высоковольтных проводов увидеть слабое свечение и искрение в одном или нескольких проводах. Тогда потребуется их замена, которую несложно провести самостоятельно. Главное, выбрать нужные по длине, с чем без труда справится продавец-консультант, если вы назовете ему марку машины.

Остальные виды диагностики системы зажигания (проверка датчиков, катушки и прочих электронных приборов) лучше доверить профессионалам.

Заключение

При самостоятельной диагностике помните, что нельзя касаться элементов двигателя, когда он запущен. Не проверяйте искрообразование на включенном моторе. Если зажигание включено, не снимайте штекерный разъем коммутатора, так как это может вывести из строя конденсатор.

Для точного выявления неисправности можно воспользоваться осциллографом, с помощью которого вывести на экран осциллограмму всей системы зажигания. О том, как правильно пользоваться прибором узнаем в следующем видео:

Система зажигания

Систему зажигания, которая обеспечивает работу двигателя, придется рассмотреть в этом разделе, хотя она и является составной частью "Электрооборудования автомобиля".

Когда мы изучали рабочий цикл двигателя, было отмечено, что в самом конце такта сжатия рабочую смесь необходимо поджечь. Это означает, что между электродами свечи зажигания в этот момент должна проскочить высоковольтная искра.

Система зажигания предназначена для создания тока высокого напряжения и распределения его по свечам цилиндров. Импульс тока высокого напряжения подается на свечи в строго определенный момент времени, который меняется в зависимости от частоты вращения коленчатого вала и нагрузки на двигатель.

На автомобилях прежних лет выпуска устанавливалась контактная или бесконтактная система зажигания. В современном автомобиле с системой впрыска топлива система зажигания является частью комплексной электронной системы управления двигателем.

Контактная система зажигания

Источники электрического тока (аккумуляторная батарея и генератор, подробный разговор о которых будет в разделе "Электрооборудование автомобиля") вырабатывают ток низкого напряжения. Они "выдают" в бортовую электрическую сеть автомобиля 12–14 вольт. Для возникновения искры между электродами свечи на них необходимо подать 18–20 тысяч вольт! Поэтому в системе зажигания имеются две электрические цепи – низкого и высокого напряжения (рис. 21). Контактная система зажигания состоит из (рис. 21):

    катушки зажигания;

    прерывателя тока низкого напряжения;

    распределителя тока высокого напряжения;

    центробежного регулятора опережения зажигания;

    вакуумного регулятора опережения зажигания;

    свечей зажигания;

    проводов низкого и высокого напряжения;

    включателя зажигания.

Катушка зажигания (рис. 21)предназначена для преобразования тока низкого напряжения в ток высокого напряжения. Как и большинство приборов системы зажигания, она располагается в моторном отсеке автомобиля.

а) электрическая цепь низкого напряжения: 1 "масса" автомобиля; 2 – аккумуляторная батарея; 3 – контакты замка зажигания; 4 – катушка зажигания; 5 – первичная обмотка (низкого напряжения); 6 – конденсатор; 7 – подвижный контакт прерывателя; 8 – неподвижный контакт прерывателя; 9 – кулачок прерывателя; 10 – молоточек контактов

б) электрическая цепь высокого напряжения: 1 катушка зажигания; 2 – вторичная обмотка (высокого напряжения); 3 – высоковольтный провод катушки зажигания; 4 – крышка распределителя тока высокого напряжения; 5 – высоковольтные провода свечей зажигания; 6 – свечи зажигания; 7 – распределитель тока высокого напряжения ("бегунок"); 8 – резистор; 9 – центральный контакт распределителя; 10 – боковые контакты крышки

Рис. 21. Контактная система зажигания

Принцип работы катушки зажигания очень прост и знаком из школьного курса физики. Когда по обмотке низкого напряжения протекает электрический ток, вокруг нее создается магнитное поле. Если прервать ток в этой обмотке, то исчезающее магнитное поле индуцирует ток уже в другой обмотке (высокого напряжения).

За счет разницы в количестве витков обмоток катушки, из 12-ти вольт мы получаем необходимые нам 20 тысяч вольт! Цифра весьма впечатляющая, но это как раз то напряжение, которое в состоянии пробить воздушное пространство (около миллиметра) между электродами свечи зажигания.

Если кто из вас, испугавшись этой цифры, решил вообще не дотрагиваться до чего-либо электрического в машине, то напрасно.

"Убивает не напряжение, а ток" – известное выражение у электриков, как нельзя лучше подходит к ситуации с электричеством в автомобиле.

В системе зажигания очень малые токи, поэтому, если вы и дотронетесь до проводов или приборов системы, то будет лишь несколько "неприятно", но не более того. Да и произойдет это только, если вы стоите босиком (или в мокрой обуви) на сырой земле или если одна рука на "массе", а другая на тех самых 20000 В.

Прерыватель тока низкого напряжения (контакты прерывателя – рис. 21) нужен для того, чтобы размыкать ток в цепи низкого напряжения. При этом во вторичной обмотке катушки зажигания индуцируется ток высокого напряжения, который затем поступает на центральный контакт распределителя.

Контакты прерывателя находятся под крышкой распределителя зажигания. Пластинчатая пружина подвижного контакта постоянно прижимает его к неподвижному контакту. Размыкаются они лишь на короткий срок, когда набегающий кулачок приводного валика прерывателя-распределителя надавит на молоточек подвижного контакта.

Параллельно контактам включен конденсатор, который необходим для того, чтобы контакты не обгорали в момент размыкания. Во время отрыва подвижного контакта от неподвижного между ними хочет проскочить мощная искра, но конденсатор поглощает в себя большую часть электрического разряда и искрение уменьшается до незначительного.

Но это только половина полезной работы конденсатора. Он еще участвует и в увеличении напряжения во вторичной обмотке катушки зажигания. Когда контакты прерывателя полностью размыкаются, конденсатор разряжается, создавая обратный ток в цепи низкого напряжения, и тем самым, ускоряет исчезновение магнитного поля. А чем быстрее исчезает это поле, тем больший ток возникает в цепи высокого напряжения.

"Зачем такой длинный разговор о такой маленькой штучке в такой большой машине?" – спросите вы.

Так вот учтите, при выходе конденсатора из строя двигатель работать не будет! Напряжение во вторичной цепи получится недостаточно большим для того, чтобы пробить воздушную преграду между электродами свечи зажигания. Может быть, иногда, слабая искорка и будет проскакивать, но нам нужна достаточно "горячая" и стабильная искра, которая гарантированно воспламенит рабочую смесь и обеспечит нормальный процесс ее сгорания. А для этого, как раз и необходимы те самые "страшные" 20 тысяч вольт, в "приготовлении" которых участвует и конденсатор тоже.

Прерыватель тока низкого напряжения и распределитель высокого напряжения расположены в одном корпусе и имеют привод от коленчатого вала двигателя.

Часто водители называют этот узел коротко – "прерыватель-распределитель" (или еще короче – "трамблер").

Крышка распределителя и распределитель (ротор) тока высокого напряжения (рис. 21 и 22) предназначены для распределения тока высокого напряжения по свечам цилиндров двигателя.

Рис. 22. Прерыватель-распределитель: 1 диафрагма вакуумного регулятора; 2 – корпус вакуумного регулятора; 3 – тяга; 4 – опорная пластина; 5 – ротор распределителя ("бегунок"); 6 – боковой контакт крышки; 7 – центральный контакт крышки; 8 – контактный уголек; 9 – резистор; 10 – наружный контакт пластины ротора; 11 – крышка распределителя; 12 – пластина центробежного регулятора; 13 – кулачок прерывателя; 14 – грузик; 15 – контактная группа; 16 – подвижная пластина прерывателя; 17 – винт крепления контактной группы; 18 – паз для регулировки зазоров в контактах; 19 – конденсатор; 20 – корпус прерывателя-распределителя; 21 – приводной валик; 22 – фильц для смазки кулачка

После того, как в катушке зажигания образовался ток высокого напряжения, он попадает (по высоковольтному проводу) на центральный контакт крышки распределителя, а затем через подпружиненный контактный уголек на пластину ротора.

Во время вращения ротора ток через небольшой воздушный зазор "соскакивает" с его пластины на боковые контакты крышки. Далее, через высоковольтные провода импульс тока высокого напряжения попадает к свечам зажигания.

Боковые контакты крышки распределителя пронумерованы и соединены высоковольтными проводами со свечами цилиндров в строго определенной последовательности.

Таким образом, устанавливается "порядок работы цилиндров", который выражается рядом цифр.

Как правило, для четырехцилиндровых двигателей применяется порядок работы: 1–3–4–2. Это означает, что после воспламенения рабочей смеси в первом цилиндре, следующий "взрыв" произойдет в третьем, потом в четвертом и, наконец, во втором цилиндре. Такой порядок работы цилиндров установлен для равномерного распределения нагрузки на коленчатый вал двигателя.

Подача высокого напряжения на электроды свечи зажигания должна происходить в конце такта сжатия, когда поршень не доходит до верхней мертвой точки примерно 4–6°, измеряя по углу поворота коленчатого вала. Этот угол называют углом опережения зажигания.

Необходимость опережения момента зажигания горючей смеси обусловлена тем, что поршень движется в цилиндре с огромной скоростью. Если смесь поджечь несколько позже, то расширяющиеся газы не будут успевать делать свою основную работу, то есть давить на поршень в должной степени. Хотя горючая смесь и сгорает в течение 0,001–0,002 секунды, поджигать ее надо до подхода поршня к верхней мертвой точке. Тогда в начале и середине рабочего хода поршень будет испытывать необходимое давление газов, а двигатель будет обладать той мощностью, которая требуется для движения автомобиля.

Первоначальный угол опережения зажигания выставляется и корректируется с помощью поворота корпуса прерывателя-распределителя. Тем самым мы выбираем момент размыкания контактов прерывателя, приближая их или, наоборот, удаляя от набегающего кулачка приводного валика прерывателя-распределителя.

В зависимости от режима работы двигателя, условия процесса сгорания рабочей смеси в цилиндрах постоянно меняются. Поэтому для обеспечения оптимальных условий необходимо постоянно менять и указанный выше угол (4–6°). Это обеспечивают центробежный и вакуумный регуляторы опережения зажигания.

Центробежный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания в зависимости от скорости вращения коленчатого вала двигателя.

При увеличении оборотов коленчатого вала двигателя поршни в цилиндрах увеличивают скорость своего возвратно-поступательного движения. В то же время скорость сгорания рабочей смеси остается практически неизменной. Следовательно, для обеспечения нормального рабочего процесса в цилиндре смесь необходимо поджигать чуть раньше. Для этого искра между электродами свечи должна проскочить раньше, а это возможно лишь в том случае, если контакты прерывателя тоже разомкнутся раньше. Это и должен обеспечить центробежный регулятор опережения зажигания (рис. 23).

а) расположение деталей регулятора: 1кулачок прерывателя; 2 – втулка кулачков; 3 – подвижная пластина; 4 – грузики; 5 – шипы грузиков; 6 – опорная пластина; 7 – приводной валик; 8 – стяжные пружины

б) грузики вместе

в) грузики разошлись

Рис. 23. Схема работы центробежного регулятора угла опережения зажигания

Центробежный регулятор опережения зажигания находится в корпусе прерывателя-распределителя (см. рис. 22 и 23). Он состоит из двух плоских металлических грузиков, каждый из которых одним из своих концов закреплен на опорной пластине, жестко соединенной с приводным валиком. Шипы грузиков входят в прорези подвижной пластины, на которой закреплена втулка кулачков прерывателя. Пластина с втулкой имеют возможность проворачиваться на небольшой угол относительно приводного валика прерывателя-распределителя.

По мере увеличения числа оборотов коленчатого вала двигателя, увеличивается и частота вращения валика прерывателя-распределителя. Грузики, подчиняясь центробежной силе, расходятся в стороны и сдвигают втулку кулачков прерывателя "в отрыв" от приводного валика, в результате чего набегающий кулачок поворачивается на некоторый угол по ходу вращения навстречу молоточку контактов. Контакты размыкаются раньше, угол опережения зажигания увеличивается.

При уменьшении скорости вращения приводного валика центробежная сила уменьшается, и под воздействием пружин грузики возвращаются на место – угол опережения зажигания уменьшается.

Вакуумный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания в зависимости от нагрузки на двигатель.

На одной и той же частоте вращения коленчатого вала двигателя положение дроссельной заслонки (педали "газа") может быть различным. Это означает, что в цилиндрах будет образовываться смесь различного состава, а скорость сгорания рабочей смеси как раз и зависит от ее состава.

При полностью открытой дроссельной заслонке (педаль "газа" "в полу") смесь сгорает быстрее, и поджигать ее можно и нужно попозже. Следовательно, угол опережения зажигания надо уменьшать.

И наоборот, когда дроссельная заслонка прикрыта, скорость сгорания рабочей смеси падает. Значит, угол опережения зажигания должен быть увеличен.

Именно этим и занимается вакуумный регулятор опережения зажигания.

Вакуумный регулятор (рис. 24) крепится к корпусу прерывателя-распределителя (см. рис. 22). Корпус регулятора разделен диафрагмой на два объема. Один из них связан с атмосферой, а другой через соединительную трубку сообщается с полостью под дроссельной заслонкой. С помощью тяги диафрагма регулятора соединена с подвижной пластиной, на которой располагаются контакты прерывателя.

Рис. 24. Вакуумный регулятор угла опережения зажигания

При увеличении угла открытия дроссельной заслонки (увеличение нагрузки на двигатель) разряжение под ней уменьшается. В этом случае, под воздействием пружины диафрагма через тягу сдвигает пластину вместе с контактами на небольшой угол в сторону от набегающего кулачка прерывателя. Контакты будут размыкаться позже, угол опережения зажигания уменьшится.

И наоборот, угол увеличивается, когда вы прикрываете дроссельную заслонку (уменьшаете "газ"). Разрежение под заслонкой увеличивается, передается к диафрагме и она, преодолевая сопротивление пружины, тянет на себя пластину с контактами. Это означает, что кулачок прерывателя быстрее встретится с молоточком контактов и разомкнет контакты раньше. Таким образом мы увеличиваем угол опережения зажигания для плохо горящей рабочей смеси.

Свеча зажигания (рис. 25) необходима для образования искрового разряда и поджигания рабочей смеси в камере сгорания. Как вы помните, устанавливается свеча зажигания в головке цилиндра двигателя (см. рис. 6).

Рис. 25. Свеча зажигания: 1 контактная гайка; 2 – изолятор; 3 – корпус; 4 – уплотнительное кольцо; 5 – центральный электрод; 6 – боковой электрод

Когда импульс тока высокого напряжения от распределителя зажигания попадает на свечу, между ее электродами проскакивает искра. Именно эта "искорка" и воспламеняет рабочую смесь, обеспечивая тем самым нормальное прохождение рабочего цикла двигателя (см. рис. 8). Свеча зажигания маленькая, но очень важная деталь вашего двигателя.

В обычной жизни вы можете посмотреть на принцип работы свечи зажигания, поиграв с пьезо- или электрозажигалкой, которая используется на кухне. Искра, проскакивающая между электродами зажигалки, воспламеняет газ и обеспечивает рабочий "кухонный" процесс.

Высоковольтные провода служат для подачи тока высокого напряжения от катушки зажигания к распределителю и от него на свечи зажигания.

Основные неисправности контактной системы зажигания

Отсутствует искра между электродами свечей из-за обрыва или плохого контакта проводов в цепи низкого напряжения, обгорания контактов прерывателя или отсутствия зазора между ними, "пробоя" конденсатора. Искра может отсутствовать также при неисправности катушки зажигания, крышки распределителя, ротора, высоковольтных проводов или самой свечи.

Для устранения этой неисправности необходимо последовательно проверить цепи низкого и высокого напряжения. Зазор в контактах прерывателя следует отрегулировать, а неработоспособные элементы системы зажигания заменить.

Двигатель работает с перебоями и (или) не развивает полной мощности из-за неисправной свечи зажигания, нарушения величины зазора в контактах прерывателя или между электродами свечей, повреждения ротора или крышки распределителя, а также при неправильной установке начального угла опережения зажигания.

Для устранения неисправности необходимо восстановить нормальные зазоры в контактах прерывателя и между электродами свечей, выставить начальный угол опережения зажигания в соответствии с рекомендациями завода-изготовителя, а неисправные детали следует заменить.

Бесконтактная система зажигания

Преимущество бесконтактной системы зажигания заключается в возможности увеличения подаваемого напряжения на электроды свечи (увеличение "мощности" искры). Это означает, что улучшается процесс воспламенения рабочей смеси. Тем самым облегчается запуск холодного двигателя, повышается устойчивость его работы на всех режимах, что имеет особое значение для суровых зимних месяцев.

Немаловажным фактом является то, что при использовании бесконтактной системы зажигания двигатель становится более экономичным.

У бесконтактной системы, как и у контактной, есть цепи низкого и высокого напряжения.

Цепи высокого напряжения контактной и бесконтактной систем зажигания практически ничем не отличаются, но цепи низкого напряжения у них различны. В бесконтактной системе используются электронные устройства – коммутатор и датчик-распределитель (датчик Холла) (рис. 26).

а) схема электрической цепи низкого напряжения: 1 –аккумуляторная батарея; 2 – контакты замка зажигания; 3 – транзисторный коммутатор; 4 – датчик-распределитель (датчик Холла); 5 – катушка зажигания

б) схема электрических соединений коммутатора и датчика-распределителя

Рис. 26. Бесконтактная система зажигания

Бесконтактная система зажигания включает в себя следующие узлы:

    катушку зажигания;

    датчик-распределитель;

    коммутатор;

    свечи зажигания;

    провода высокого и низкого напряжения;

    выключатель зажигания.

В такой системе зажигания отсутствуют контакты прерывателя, а значит, нечему подгорать и нечего регулировать. Функцию контактов в этом случае выполняет бесконтактный датчик Холла, который посылает управляющие импульсы в электронный коммутатор. А коммутатор, в свою очередь, управляет катушкой зажигания, которая преобразует ток низкого напряжения в те самые "страшно большие" вольты.

Основные неисправности бесконтактной системы зажигания

Если "заглох" и не хочет заводиться двигатель с бесконтактной системой зажигания, то в первую очередь стоит проверить... подачу бензина. Может быть, к вашей радости, причина была именно в этом. Если с бензином все в порядке, а искры на свече нет, то у вас есть три варианта решения проблемы.

Начнем с третьего. Надо хлопнуть дверцей машины, сказать нехорошие слова и опоздать на работу, добираясь туда на общественном транспорте.

Первый вариант предполагает попытку проверить на практике мнение о том, что "электроника – это наука о контактах". Открываем капот и проверяем, зачищаем, подергиваем и подпихиваем на свои места все провода и проводочки, которые попадаются под руку. Если до этих судорожных движений где-то были ненадежные электрические соединения, то двигатель заведется. А если нет, то остается еще второй вариант.

Для возможности воплощения в жизнь второго варианта вам следует быть запасливым водителем. Из резерва необходимых вещей, которые вы возите с собой в машине, в первую очередь надо взять запасной коммутатор и заменить им прежний. Как правило, после этой процедуры двигатель оживает. Если же он все еще не хочет запускаться, то имеет смысл, последовательно меняя на новые, проверить крышку распределителя, ротор, бесконтактный датчик и катушку зажигания. В процессе этой "меняльной" процедуры двигатель все-таки заведется, а позже дома, вместе со специалистом вы сможете разобраться, какой конкретно узел вышел из строя и почему.

Эксплуатация системы зажигания

При нормальной эксплуатации автомобиля и периодическом его обслуживании система зажигания не доставляет водителю больших хлопот. Но некоторые водители вообще забывают о том, что кроме пепельницы и магнитолы в автомобиле есть еще и многострадальный двигатель, и в частности его система зажигания.

Наступает момент, и машина "говорит" водителю о том, что у нее тоже есть "нервы и предел терпения". Двигатель начинает фыркать и дымить, глохнуть и не заводиться. Это могут быть крупные поломки или мелкие неисправности в системах и механизмах двигателя, но, как правило, проблема кроется всего лишь в нарушенных регулировках и соединениях.

Так как мы уже знаем, что "электроника – это наука о контактах", то в первую очередь необходимо следить за чистотой и надежностью электрических соединений. Поэтому при эксплуатации автомобиля иногда приходится зачищать клеммы проводов и штекерные разъемы.

Периодически следует контролировать зазор в контактах прерывателя (рис. 21)и при необходимости его регулировать. Если зазор в контактах прерывателя больше нормы (0,35–0,45 мм), то наблюдается неустойчивая работа двигателя на больших оборотах. Если меньше – неустойчивая работа на оборотах холостого хода. Все это происходит по причине того, что нарушенный зазор меняет время замкнутого состояния контактов. А это уже влияет и на мощность искры, проскакивающей между электродами свечи, и на сам момент ее возникновения в цилиндре (опережение зажигания).

К сожалению, качество нашего бензина нередко оставляет желать лучшего. Поэтому, если сегодня вы заправили свой автомобиль не очень качественным бензином, то в следующий раз он может оказаться еще хуже. Естественно, это не может не влиять на качество приготавливаемой карбюратором горючей смеси и процесс ее сгорания в цилиндре. В таких случаях, чтобы двигатель безотказно продолжал выполнять свою работу, необходимо подстраивать систему зажигания под "сегодняшний" бензин.

Если первоначальный угол опережения зажигания не соответствует оптимальному, то можно наблюдать и ощущать следующие явления.

Угол опережения зажигания слишком велик (раннее зажигание):

    затрудненный запуск холодного двигателя;

    "хлопки" в карбюраторе (обычно хорошо слышны из-под капота при попытках запуска двигателя);

    потеря мощности двигателя (машина плохо "тянет");

    перерасход топлива;

    перегрев двигателя (индикатор температуры охлаждающей жидкости активно стремится к красному сектору);

    повышенное содержание вредных веществ в выхлопных газах.

Угол опережения зажигания меньше нормы (позднее зажигание):

    "выстрелы" в глушителе;

    потеря мощности двигателя;

    перерасход топлива;

    перегрев двигателя.

Короче говоря, при неправильно выставленном зажигании двигатель хочет "умереть", а машина не хочет ехать. Перечень вышеописанных "кошмаров" можно было бы и продолжить, но и этого достаточно для того, чтобы вы поняли, что двигатель и его системы требуют периодических регулировок. А кто будет этим заниматься, зависит от вас. Можно самостоятельно овладеть некоторыми навыками в не очень трудоемких и не очень сложных операциях по регулировкам. Или можно обращаться к специалисту, которому вы будете доверять свою "ласточку".

Свеча зажигания, как было упомянуто ранее, это маленький и с виду простенький элемент системы зажигания, но это только с виду.

Нормальная работа двигателя возможна при условии, если зазор между электродами свечи будет конкретным и одинаковым в свечах всех цилиндров. Для контактных систем зажигания зазор должен быть в пределах 0,5–0,6 мм, а для бесконтактных систем 0,7–0,9 мм и более.

Теперь вспомните "жуткие" условия, в которых работают свечи зажигания. Не всякий металл выдержит огромные температуры в агрессивной среде. Поэтому со временем электроды свечей подгорают и покрываются нагаром.

Вообще-то, изношенные или обросшие нагаром свечи рекомендуется заменить. Но если в пути запасных свечей не оказалось, то очищаем электроды "забарахлившей" свечи от нагара мелкозернистым надфилем или специальной алмазной пластинкой, регулируем зазор, подгибая боковой электрод, и вкручиваем свечу на место.

Каждый раз, выкручивая свечи зажигания, обращайте внимание на цвет их электродов. Если они светло-коричневые, то свеча работает нормально. А если они черные, то возможно свеча вообще не работает.

Сегодня в продаже есть силиконовые высоковольтные провода. При замене вышедших из строя старых проводов имеет смысл приобрести именно силиконовые, так как они не "пробиваются" током высокого напряжения. А ведь перебои в работе двигателя нередко происходят из-за утечки импульса тока высокого напряжения по высоковольтному проводу на "массу" автомобиля. Вместо того чтобы пробивать воздушный барьер между электродами свечи и поджигать рабочую смесь, электрический ток выбирает путь наименьшего сопротивления и "уходит" на сторону.

Старайтесь не открывать капот автомобиля, когда на улице идет дождь или снег. После мокрого душа двигатель может не запуститься, так как вода, попав на приборы электрооборудования и провода, образует токопроводящие мостики, по которым высокое напряжение утекает на "массу".

Тот же эффект, но более усугубленный, возникает у любителей прокатиться по глубоким лужам на большой скорости. В результате "купания"

водой заливаются все приборы и провода системы зажигания, расположенные под капотом, и двигатель, естественно, глохнет, поскольку ток высокого напряжения уже не может добраться до свечей зажигания. Возобновить поездку в таких случаях удается лишь после того, как горячий двигатель своим теплом просушит все "электрическое" в подкапотном пространстве.

Система зажигания на автомобилях с электронным управлением двигателем

На современных автомобилях с электронным управлением двигателем система зажигания состоит из (рис. 27):

    электронного блока управления (ЭБУ);

    датчиков (угла поворота коленчатого вала, положения дроссельной заслонки, детонации, температуры охлаждающей жидкости);

    катушки зажигания (общей или по одной катушке на каждый цилиндр);

    распределителя тока высокого напряжения (при общей катушке зажигания);

    высоковольтных проводов;

    свечей зажигания.


Рис. 27. Схема электронной системы зажигания. Вариант А – с общей катушкой зажигания; Вариант Б – с отдельной катушкой на каждый цилиндр: 1 маховик с зубчатым венцом; 2 – поршень; 3 – цилиндр двигателя; 4 – камера сгорания; 5 – впускной клапан; 6 – поток воздуха; 7 – дроссельная заслонка; 8 – датчик положения дроссельной заслонки; 9 – катушка зажигания; 9" – катушка зажигания на каждой свече; 10 – распределитель тока высокого напряжения; 11 – высоковольтные провода; 11" – электрический провод, по которому к катушке зажигания поступает импульсный сигнал от ЭБУ; 12 – свеча зажигания; 13 – выпускной клапан; 14 – датчик температуры охлаждающей жидкости; 15 – датчик детонации; 16 – датчик угла поворота коленчатого вала; 17 – электронный блок управления (ЭБУ); 18 – диагностическая лампа-сигнализатор; 19 – диагностическая колодка; 20 – замок зажигания; 21 – аккумуляторная батарея

При работе двигателя информация от датчиков поступает в электронный блок управления (ЭБУ). В результате обработки полученной информации ЭБУ устанавливает оптимальный момент зажигания, необходимый для получения максимальной экономичности работы двигателя в каждый отдельный момент времени, и подает импульсный сигнал катушке (катушкам) зажигания.

Электронная система зажигания не требует регулировок и очень надежна в течение всего срока службы.

© А. Пахомов (aka IS_18 , Ижевск)

Основная задача системы зажигания современного бензинового двигателя – формирование импульсов высокого напряжения, необходимых для воспламенения топливно-воздушной смеси. Первоначальное воспламенение смеси происходит от энергии, выделяющейся в шнуре пробоя. В объеме шнура электрическая искра вызывает практически мгновенный термический нагрев молекул смеси, их ионизацию и химическую реакцию между ними. Если выделившейся при этом энергии достаточно для начала реакции горения смеси в оставшемся объеме камеры сгорания, то воспламенение смеси произойдет, и цилиндр отработает нормально. В противном случае возможен пропуск воспламенения. Поэтому система зажигания играет одну из ключевых ролей в обеспечении надежного воспламенения топливно-воздушной смеси.

Проверка элементов системы зажигания – обязательная операция при проведении диагностических работ. Она включает в себя достаточно обширный перечень действий с применением разнообразных методик. К числу последних относится анализ осциллограммы высоковольтного пробоя и горения искры, полученный с помощью мотортестера.

Вкратце напомним характерные моменты этой осциллограммы:

Время накопления – это время, в течение которого происходит накопление энергии в магнитном поле катушки. Оно определяется блоком управления в соответствии с заложенной в него программой либо коммутатором зажигания. Когда-то давно время накопления зависело от угла замкнутого состояния контактов, но подобные системы уже безнадежно устарели, и рассматриваться нами не будут. Время горения – это время существования тока между электродами свечи. Зависит от очень многих факторов и составляет 1 …2 мс.


В момент размыкания первичной цепи системы зажигания во вторичной катушке генерируется высоковольтный импульс. Значение напряжения, при котором происходит пробой искрового промежутка, называется напряжением пробоя. При анализе осциллограммы это значение необходимо измерить и оценить. Поговорим о том, каким образом это можно сделать, от чего оно будет зависеть.

Самый важный тезис, который обязательно необходимо озвучить, прежде чем продолжить разговор, заключается в следующем: система зажигания современного двигателя является частью системы управления двигателем, исполнительным механизмом этой системы.

В чём коренное отличие современной системы от системы с центробежным и вакуумным регуляторами, известной по автомобилям ВАЗ классической компоновки? Отличие заключается в самом главном. Если ранее в перечень задач системы зажигания входило формирование времени накопления энергии в катушке и регулировка угла опережения зажигания в зависимости от оборотов коленчатого вала и нагрузки на двигатель, то функция современной системы зажигания заключается только в генерации высоковольтных импульсов и распределении их по цилиндрам двигателя. Задача расчёта оптимального УОЗ и времени накопления возложена на электронный блок управления двигателем. Для грамотного анализа осциллограмм необходимо четко представлять, как функционирует система управления двигателем в части управления системой зажигания.

Для правильного понимания методик диагностики нужно знать принцип работы того или иного элемента, видеть причинно-следственные связи, и прежде всего совершенно необходимо иметь представление о том, как происходит пробой искрового промежутка.

Рассмотрим в упрощенном виде механизм формирования шнура пробоя. В общем случае газы и их смеси являются идеальными изоляторами. Но в результате действия ионизирующего космического излучения в воздухе всегда присутствуют свободные электроны и соответственно, положительно заряженные ионы – остатки молекул. Поэтому, если газ разместить между двумя электродами и подать на них напряжение, между электродами возникнет электрический ток. Однако величина этого тока очень незначительна вследствие малого количества электронов и ионов.

Рассматриваемый вариант является идеальным. Между плоскими электродами, находящимися на малом расстоянии друг от друга, формируется однородное электрическое поле. Однородным называют поле, напряжённость которого в любой точке остаётся неизменной. Внутри искрового промежутка электроны движутся к положительно заряженному электроду, получая ускорение вследствие действия на них электрического поля. При определенном значении напряжения на электродах приобретенной электроном кинетической энергии становится достаточно для ударной ионизации молекул.

Сказанное поясняют рисунки:

Рис.3 Рис.4
Свободный электрон 1 (рис.3 ) при соударении с нейтральной молекулой расщепляет ее на электрон 2 и положительный ион. Электроны 1 и 2 при дальнейшем соударении с нейтральными молекулами снова расщепляют их на электроны 3 и 4 и положительные ионы, и т. д. Аналогичное явление происходит и при движении положительно заряженных ионов (рис.4 ). Возникает лавинообразное размножение положительных ионов и электронов при соударении положительных ионов с нейтральными молекулами.


Таким образом, процесс идет по нарастающей, и ионизация в газе быстро достигает очень большой величины. Это явление вполне аналогично снежной лавине в горах, для зарождения которой бывает достаточно ничтожного комка снега. Поэтому и описанный процесс был назван ионной лавиной. В результате между электродами возникает значительный электрический ток, который создает сильно нагретый и ионизированный канал. Температура в канале достигает 10 000 К. Напряжение, при котором возникает ионная лавина, и есть ранее рассмотренное напряжением пробоя. Оно обозначается Uпр. После пробоя сопротивление канала стремится к нулю, сила тока достигает десятков ампер, а напряжение падает. Первоначально процесс протекает в очень узкой зоне, но вследствие быстрого роста температуры канал пробоя расширяется со сверхзвуковой скоростью. При этом образуется ударная волна, воспринимаемая на слух как характерный треск.

С практической точки зрения наиболее важным является значение напряжения пробоя, которое можно измерить и оценить после получения осциллограммы. Проанализируем факторы, от которых оно зависит.

1 . Совершенно очевидно, что на значение напряжения пробоя будет оказывать влияние расстояние между электродами. Чем больше расстояние, тем ниже напряжённость электрического поля в пространстве между электродами, тем меньшую кинетическую энергию будут приобретать заряженные частицы при движении. И соответственно, при прочих равных условиях потребуется большее значение прикладываемого напряжения для пробоя искрового промежутка.

2 . Чем ниже концентрация молекул газа в искровом промежутке, тем меньшее число молекул находится в единице объема, и тем больший путь свободно пролетают заряженные частицы между двумя последовательными соударениями. Соответственно, тем большее количество кинетической энергии они запасают в процессе движения, и тем выше вероятность последующей ударной ионизации. Поэтому напряжение пробоя увеличивается с ростом концентрации молекул газа. На практике это означает, что напряжение пробоя увеличивается с ростом давления в камере сгорания.

3 . Для решения задач диагностики важно знать зависимость напряжения пробоя от наличия в воздухе молекул углеводородов, то есть топлива. В общем случае молекулы топлива являются диэлектриком. Но они представляют собой длинные углеводородные цепочки, разрушение которых в электрическом поле наступает раньше, чем относительно устойчивых двухатомных молекул атмосферных газов. Вследствие этого увеличение количества молекул топлива (обогащение смеси) приводит к понижению напряжения пробоя.

4 . На величину напряжения пробоя будет оказывать значительное влияние форма электродов свечи. В рассмотренном выше идеальном случае предполагалось, что электроды плоские, и возникающее между ними электрическое поле однородное. В реальности форма электродов свечи зажигания отлична от плоскости, что вызывает неоднородную структуру электрического поля. Можно утверждать, что значение напряжения пробоя будет в значительной мере зависеть от формы электродов и создаваемого ими электрического поля.

5 . Значение напряжения пробоя реальной свечи зажигания будет зависеть от полярности приложенного напряжения. Причина этого явления заключается в следующем. При нагревании металла до достаточно высокой температуры свободные электроны начинают покидать пределы кристаллической решетки металла. Это явление называется термоэлектронной эмиссией. Образуется электронное облако, обозначенное на рисунке желтым цветом. Вследствие того, что центральный электрод свечи зажигания имеет более высокую температуру, чем боковой, термоэлектронная эмиссия с его поверхности имеет более ярко выраженный характер. Поэтому подача на боковой электрод положительного потенциала приведет к пробою искрового промежутка при меньшем напряжении, чем в противоположном случае.

6 . Так как рассматриваемый процесс пробоя происходит в камере сгорания реального двигателя, то влияние на напряжение пробоя будут оказывать характер движения газов в камере сгорания, их температура и давление в момент искрообразования, материал и температура электродов свечи, а также особенности конструкции применяемой системы зажигания.

7 . Также интересен в прикладном смысле следующий факт. Положительно заряженные ионы представляют собой ядра молекул и обладают значительной массой. Из курса физики известно, что практически вся масса молекулы заключена в ядре, а масса электрона по сравнению с ядром ничтожна. Ионы, достигая отрицательного электрода, получают электрон и превращаются в нейтральную молекулу, но при этом они бомбардируют электрод, разрушая его кристаллическую решётку. На практике это выражается в эрозии электрода. Положительный электрод подвержен меньшему разрушению, ведь его бомбардируют электроны, обладающие малой массой.

Ну и наконец, рассмотрим еще один важный момент, о котором всегда нужно помнить, анализируя осциллограмму высокого напряжения. Обратимся к рисунку.

На нем изображен график изменения давления в цилиндре от угла поворота коленчатого вала при отсутствии воспламенения. Предположим, что момент искрообразования соответствует углу опережения зажигания УОЗ 1 . Давление в цилиндре при этом составит Р1 . Соответственно, в момент УОЗ 2 давление будет равно Р2 . Совершенно очевидно, что давление в момент искрообразования, а соответственно и напряжение пробоя, зависит от угла опережения зажигания.

Следствием этой зависимости является тот факт, что при увеличении частоты вращения путем плавного открытия дроссельной заслонки будет наблюдаться снижение значения напряжения пробоя. И вообще, напряжение пробоя зависит от УОЗ на всех режимах работы двигателя.

А теперь нужно вспомнить о том, что электронный блок управления осуществляет контроль частоты вращения на холостом ходу путем изменения УОЗ. Процесс регулировки можно наблюдать сканером в режиме «поток данных» при работе двигателя с полностью закрытой дроссельной заслонкой. УОЗ при этом изменяется в достаточно широких пределах, особенно на изношенных или неисправных двигателях. Если же приоткрыть дроссельную заслонку и тем самым вывести блок из режима управления частотой вращения, можно увидеть, что значение УОЗ становится достаточно стабильным.
Именно вследствие работы программного регулятора оборотов на осциллограмме высокого напряжения наблюдаются разные значения напряжения пробоя даже в пределах одного кадра:



На основании изложенных соображений представляется несложным прийти к заключению:

1 . Делать какие-либо однозначные выводы из абсолютного значения напряжения пробоя нельзя. Даже на одном и том же двигателе оно будет зависеть от того, какой марки установлены свечи, от формы электродов, от межэлектродного зазора. Зависит оно и от типа установленной системы зажигания и даже от конструкции камеры сгорания. Например, на холостом ходу разных двигателей можно увидеть напряжение пробоя от 5 до 15 кВ, и любое из этих значений будет являться нормальным.

2 . Разброс значений напряжения пробоя на холостом ходу двигателя, оснащенного электронной системой управления, не является дефектом. Это следствие работы алгоритма управления частотой вращения на холостом ходу.

3 . Если имеет место система DIS, то напряжение пробоя в парных цилиндрах всегда будет различным. Это следствие того, что в системе DIS полярность приложенного к свечам напряжения противоположна, соответственно различаться будут и значения напряжения пробоя.

4 . Имеет смысл сравнительная оценка напряжения пробоя в разных цилиндрах. Мотортестеры чаще всего отображают статистические данные: среднее, максимальное и минимальное значение напряжения пробоя. При значительном отклонении в одном или нескольких цилиндрах необходим дальнейший поиск.

Система зажигания обеспечивает работу двигателя и является составной частью «Электрооборудования автомобиля».

Система зажигания предназначена для создания тока высокого напряжения и распределения его по свечам цилиндров. Импульс тока высокого напряжения подается на свечи в строго определенный момент времени, который меняется в зависимости от частоты вращения коленчатого вала и нагрузки на двигатель. В настоящее время на автомобилях может устанавливаться контактная система зажигания или бесконтактная электронная система.

Контактная система зажигания.

Источники электрического тока (аккумуляторная батарея и генератор) вырабатывают ток низкого напряжения. Они «выдают» в бортовую электрическую сеть автомобиля 12 - 14 вольт. Для возникновения же искры между электродами свечи на них необходимо подать 18 - 20 тысяч вольт! Поэтому в системе зажигания имеются две электрические цепи - низкого и высокого напряжений. (рис. 1)

Контактная система зажигания (рис. 2) состоит из:
. катушки зажигания,
. прерывателя тока низкого напряжения,
. распределителя тока высокого напряжения
. вакуумного и центробежного регуляторов опережения зажигания,
. свечей зажигания,
. проводов низкого и высокого напряжения,
. включателя зажигания.

Катушка зажигания предназначена для преобразования тока низкого напряжения в ток высокого напряжения. Как и большинство приборов системы зажигания, она располагается в моторном отсеке автомобиля. Принцип работы катушки зажигания очень прост. Когда по обмотке низкого напряжения протекает электрический ток, то вокруг нее создается магнитное поле. Если же прервать ток в этой обмотке, то исчезающее магнитное поле индуцирует ток уже в другой обмотке (высокого напряжения).

За счет разницы в количестве витков обмоток катушки, из 12-ти вольт мы получаем необходимые нам 20 тысяч вольт! Это как раз то напряжение, которое в состоянии пробить воздушное пространство (около миллиметра) между электродами свечи зажигания.

Прерыватель тока низкого напряжения - нужен для того,чтобы размыкать ток в цепи низкого напряжения. Именно при этом во вторичной обмотке катушки зажигания индуцируется ток высокого напряжения, который затем поступает на центральный контакт распределителя.
Контакты прерывателя находятся под крышкой распределителя зажигания. Пластинчатая пружина подвижного контакта постоянно прижимает его к неподвижному контакту. Размыкаются они лишь на короткий срок, когда набегающий кулачок приводного валика прерывателя-распределителя надавит на молоточек подвижного контакта.

Параллельно контактам включен конденсатор. Он необходим для того, чтобы контакты не обгорали в момент размыкания. Во время отрыва подвижного контакта от неподвижного, между ними хочет проскочить мощная искра, но конденсатор поглощает в себя большую часть электрического разряда и искрение уменьшается до незначительного. Конденсатор еще участвует и в увеличении напряжения во вторичной обмотке катушки зажигания. Когда контакты прерывателя полностью размыкаются, конденсатор разряжается, создавая обратный ток в цепи низкого напряжения, и тем самым, ускоряет исчезновение магнитного поля. А чем быстрее исчезает это поле, тем больший ток возникает в цепи высокого напряжения.

Прерыватель тока низкого напряжения и распределитель высокого напряжения расположены водном корпусе и имеют привод от коленчатого вала двигателя (рис. 3). Часто водители называют этот узел коротко - «прерыватель-распределитель» (или еще короче -«трамблер»).


Крышка распределителя и распределитель (ротор) тока высокого напряжения (рис. 2 и 3) предназначены для распределения тока высокого напряжения по свечам цилиндров двигателя.
После того, как в катушке зажигания образовался ток высокого напряжения, он попадает (по высоковольтному проводу) на центральный контакт крышки распределителя, а затем через подпружиненный контактный уголек на пластину ротора. Во время вращения ротора ток «соскакивает» с его пластины, через небольшой воздушный зазор, на боковые контакты крышки. Далее, через высоковольтные провода, импульс тока высокого напряжения попадает к свечам зажигания.
Боковые контакты крышки распределителя пронумерованы и соединены (высоковольтными проводами) со свечами цилиндров в строго определенной последовательности.

Таким образом устанавливается «порядок работы цилиндров», который выражается рядом цифр. Как правило, для четырехцилиндровых двигателей, применяется последовательность: 1 -3 - 4 - 2. Это означает, что после воспламенения рабочей смеси в первом цилиндре, следующее воспламенение произойдет в третьем, потом в четвертом и, наконец, во втором цилиндре. Такой порядок работы цилиндров установлен для равномерного распределения нагрузки на коленчатый вал двигателя.
Подача высокого напряжения на электроды свечи зажигания должна происходить в конце такта сжатия, когда поршень не доходит до верхней мертвой точки примерно 4О - 6О, измеряя по углу поворота коленчатого вала. Этот угол называют углом опережения зажигания.

Необходимость опережения момента зажигания горючей смеси обусловлена тем, что поршень движется в цилиндре с огромной скоростью. Если смесь поджечь несколько позже, то расширяющиеся газы не будут успевать делать свою основную работу, то есть давить на поршень в должной степени. Хотя горючая смесь и сгорает в течение 0,001 - 0,002 секунды, поджигать ее надо до подхода поршня к верхней мертвой точке. Тогда в начале и середине рабочего хода поршень будет испытывать необходимое давление газов, а двигатель будет обладать той мощностью, которая требуется для движения автомобиля.
Первоначальный угол опережения зажигания выставляется и корректируется с помощью поворота корпуса прерывателя-распределителя. Тем самым мы выбираем момент размыкания контактов прерывателя, приближая их или наоборот, удаляя от набегающего кулачка приводного валика прерывателя-распределителя.
Однако, в зависимости от режима работы двигателя, условия процесса сгорания рабочей смеси в цилиндрах постоянно меняются. Поэтому для обеспечения оптимальных условий, необходимо постоянно менять и указанный выше угол (4 о - 6 о). Это обеспечивают центробежный и вакуумный регуляторы опережения зажигания.

Центробежный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания, в зависимости от скорости вращения коленчатого вала двигателя. При увеличении оборотов коленчатого вала двигателя, поршни в цилиндрах увеличивают скорость своего возвратно-поступательного движения. В тоже время скорость сгорания рабочей смеси остается практически неизменной. Это означает, что для обеспечения нормального рабочего процесса в цилиндре, смесь необходимо поджигать чуть раньше. Для этого искра между электродами свечи должна проскочить раньше, а это возможно лишь в том случае, если контакты прерывателя разомкнутся тоже раньше. Вот это и должен обеспечить центробежный регулятор опережения зажигания (рис. 4).



Центробежный регулятор опережения зажигания находится в корпусе прерывателя-распределителя (см. рис. 3 и 4). Он состоит из двух плоских металлических грузиков, каждый из которых одним из своих концов закреплен на опорной пластине, жестко соединенной с приводным валиком. Шипы грузиков входят в прорези подвижной пластины, на которой закреплена втулка кулачков прерывателя. Пластина с втулкой имеют возможность проворачиваться на небольшой угол относительно приводного валика прерывателя-распределителя. По мере увеличения числа оборотов коленчатого вала двигателя, увеличивается и частота вращения валика прерывателя-распределителя. Грузики, подчиняясь центробежной силе, расходятся в стороны, и сдвигают втулку кулачков прерывателя «в отрыв» от приводного валика. То есть набегающий кулачок поворачивается на некоторый угол по ходу вращения навстречу молоточку контактов. Соответственно контакты размыкаются раньше, угол опережения зажигания увеличивается. При уменьшении скорости вращения приводного валика, центробежная сила уменьшаются и, под воздействием пружин, грузики возвращаются на место - угол опережения зажигания уменьшается.

Вакуумный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания, в зависимости от нагрузки на двигатель.
На одной и той же частоте вращения коленчатого вала двигателя, положение дроссельной заслонки (педали газа) может быть различным. Это означает, что в цилиндрах будет образовываться смесь различного состава. А скорость сгорания рабочей смеси как раз и зависит от ее состава.
При полностью открытой дроссельной заслонке смесь сгорает быстрее, и поджигать ее можно и нужно попозже. То есть угол опережения зажигания надо уменьшать. И наоборот, когда дроссельная заслонка прикрыта, скорость сгорания рабочей смеси падает, поэтому угол опережения зажигания должен быть увеличен.


Вакуумный регулятор (рис. 6) крепится к корпусу прерывателя - распределителя (рис. 3). Корпус регулятора разделен диафрагмой на два объема. Один из них связан с атмосферой, а другой, через соединительную трубку, с полостью под дроссельной заслонкой. С помощью тяги, диафрагма регулятора соединена с подвижной пластиной, на которой располагаются контакты прерывателя.
При увеличении угла открытия дроссельной заслонки (увеличение нагрузки на двигатель) разряжение под ней уменьшается. Тогда, под воздействием пружины, диафрагма через тягу сдвигает на небольшой угол пластину вместе с контактами в сторону от набегающего кулачка прерывателя. Контакты будут размыкаться позже - угол опережения зажигания уменьшится. И наоборот - угол увеличивается, когда вы уменьшаете газ, то есть, прикрываете дроссельную заслонку. Разряжение под ней увеличивается, передается к диафрагме и она, преодолевая сопротивление пружины, тянет на себя пластину с контактами. Это означает, что кулачок прерывателя раньше встретится с молоточком контактов и разомкнет их. Тем самым мы увеличили угол опережения зажигания для плохо горящей рабочей смеси.


Свеча зажигания (рис. 7) необходима для образования искрового разряда и зажигания рабочей смеси в камере сгорания двигателя. Надеюсь, вы помните, что свеча устанавливается в головке
цилиндра. Когда импульс тока высокого напряжения от распределителя попадает на свечу зажигания, между ее электродами проскакивает искра. Именно эта «искорка» воспламеняет рабочую смесь и обеспечивает нормальное прохождение рабочего цикла двигателя.
Высоковольтные провода служат для подачи тока высокого напряжения от катушки зажигания
к распределителю и от него на свечи зажигания.

Основные неисправности контактной системы зажигания.

Отсутствует искра между электродами свечей из-за обрыва или плохого контакта проводов в цепи низкого напряжения, обгорания контактов прерывателя или отсутствия зазора между ними,
«пробоя» конденсатора. Также искра может отсутствовать при неисправности катушки зажигания, крышки распределителя, ротора, высоковольтных проводов или самой свечи.
Для устранения этой неисправности необходимо последовательно проверить цепи низкого и высокого напряжения. Зазор в контактах прерывателя следует отрегулировать, а неработоспособные элементы системы зажигания заменить.

Двигатель работает с перебоями и (или) не развивает полной мощности из-за неисправной свечи зажигания, нарушения величины зазора в контактах прерывателя или между электродами
свечей, повреждении ротора или крышки распределителя, а также при неправильной установке начального угла опережения зажигания.
Для устранения неисправности необходимо восстановить нормальные зазоры в контактах прерывателя и между электродами свечей, выставить начальный угол опережения зажигания в
соответствии с рекомендациями завода-изготовителя, ну а неисправные детали следует поменять на новые.

Электронная бесконтактная система зажигания.

Преимущество электронной бесконтактной системы зажигания заключается в возможности увеличения подаваемого напряжения на электроды свечи. Это означает, что улучшается процесс воспламенения рабочей смеси. Тем самым облегчается запуск холодного двигателя, повышается устойчивость его работы на всех режимах. И это имеет особое значение для наших суровых зимних месяцев.
Немаловажным фактом является то, что при использовании электронной бесконтактной системы зажигания, двигатель становится более экономичным.
Как и у бесконтактной системы есть цепи низкого и высокого напряжения. Цепи высокого напряжения у них практически ни чем не отличаются. А вот в цепи низкого напряжения, бесконтактная система в отличие от своего контактного предшественника, использует электронные устройства - коммутатор и датчик-распределитель (датчик Холла) (рис. 8).



Электронная бесконтактная система зажигания включает в себя следующие узлы:
. источники электрического тока,
. катушку зажигания,
. датчик - распределитель,
. коммутатор,
. свечи зажигания,
. провода высокого и низкого напряжения,
. выключатель зажигания.
В электронной системе зажигания отсутствуют контакты прерывателя, а значит нечему
подгорать и нечего регулировать. Функцию контактов в этом случае выполняет бесконтактный
датчик Холла, который посылает управляющие импульсы в электронный коммутатор. А
коммутатор, в свою очередь, управляет катушкой зажигания, которая преобразует ток низкого
напряжения в большие вольты.

Основные неисправности электронной бесконтактной системы зажигания.

Если «заглох» и не хочет заводиться двигатель с электронной бесконтактной системой зажигания, то в первую очередь стоит проверить... подачу бензина. Может быть, к вашей радости, причина была именно в этом. Если же с бензином все в порядке, а искры на свече нет, то у вас есть два варианта решения проблемы.
Первый вариант предполагает попытку проверить на практике мнение о том, что «электроника - наука о контактах». Открываем капот и проверяем, зачищаем, подергиваем и подпихиваем на
свои места все провода и проводочки, которые попадаются под руку. Если где-то были ненадежные электрические соединения, то двигатель заведется. А если нет, то остается еще и второй вариант.
Для возможности воплощения в жизнь второго варианта, вам следует быть запасливым водителем. Из резерва необходимых вещей, которые вы возите с собой в машине, в первую очередь надо взять запасной коммутатор и заменить им прежний. Как правило, после этой процедуры двигатель оживает. Если же он все еще не хочет запускаться, то имеет смысл, последовательно меняя на новые, проверить крышку распределителя, ротор, бесконтактный датчик и катушку зажигания. В процессе этой «меняльной» процедуры двигатель все-таки заведется, а позже дома, вместе со специалистом вы сможете разобраться, какой конкретно узел вышел из строя и почему.
Из опыта эксплуатации машины в наших условиях могу сказать, что большая часть проблем, возникающих в системе зажигания, связана с «чистотой» родных дорог. Зимой жидкая «каша» из
грязного снега и солевого раствора лезет во все щели и разъедает все, что только можно. А летом вездесущая пыль, в которую в частности превращается зимняя «соленая каша», забивается еще
глубже и весьма тлетворно влияет на все электрические соединения.

Эксплуатация системы зажигания.

Так как мы уже знаем, что «электроника - наука о контактах», то в первую очередь необходимо следить за чистотой и надежностью электрических соединений. Поэтому при эксплуатации
автомобиля иногда приходится зачищать клеммы проводов и штекерные разъемы. Периодически следует контролировать зазор в контактах прерывателя (рис. 19) и при необходимости его регулировать. Если зазор в контактах прерывателя больше нормы (0,35 - 0,45 мм), то наблюдается неустойчивая работа двигателя на больших оборотах. Если меньше - неустойчивая работа на оборотах холостого хода. Все это происходит по причине того, что нарушенный зазор изменяет время замкнутого состояния контактов. А это уже влияет и на мощность искры, проскакивающей между электродами свечи, и на сам момент ее возникновения в цилиндре (опережение зажигания).
К сожалению, качество нашего бензина оставляет желать лучшего. Поэтому, если сегодня вы заправили свой автомобиль плохим бензином, то в следующий раз он может быть еще хуже.
Естественно это не может не влиять на качество приготавливаемой карбюратором горючей смеси и процесс ее сгорания в цилиндре. В таких случаях, чтобы двигатель безотказно продолжал выполнять свою работу, необходимо подстраивать систему зажигания под сегодняшний бензин.
Если первоначальный угол опережения зажигания не соответствует оптимальному, то можно наблюдать и ощущать следующие явления.

Угол опережения зажигания слишком велик (раннее зажигание):
. затрудненный запуск холодного двигателя,
. «хлопки» в карбюраторе (обычно хорошо слышны из-под капота при попытках запуска
двигателя),
. потеря мощности двигателя (машина плохо «тянет»),
. перерасход топлива,
. перегрев двигателя (индикатор температуры охлаждающей жидкости активно стремится к красному сектору),
. повышенное содержание вредных выбросов в выхлопных газах.

Угол опережения зажигания меньше нормы (позднее зажигание):
. «выстрелы» в глушителе,
. потеря мощности двигателя,
. перерасход топлива,
. перегрев двигателя.

Свеча зажигания, как было упомянуто ранее, это маленький и с виду простенький элемент системы зажигания. Однако для нормальной работы двигателя зазор между электродами свечи должен быть конкретным и равным в свечах всех цилиндров. Для контактных систем зажигания зазор между электродами свечи должен быть в пределах 0,5 - 0,6 мм, для бесконтактных систем чуть больше - 0,7 - 0,9 мм. Вспомните те «жуткие» условия, в которых работают свечи зажигания. Не всякий металл выдержит огромные температуры в агрессивной среде. Поэтому электроды свечей подгорают и покрываются нагаром, а это означает, что нам опять надо «засучить рукава». Мелкозернистым надфилем или специальной алмазной пластинкой очищаем электроды свечи от нагара. Регулируем зазор, подгибая боковой электрод свечи. Вкручиваем ее на место или выбрасываем, в зависимости от степени обгорания электродов. Каждый раз, выкручивая свечи зажигания, обращайте внимание на цвет их электродов. Если они светло-коричневые - то свеча работает нормально, если черные - то возможно свеча вообще не работает.
Последнее время в продаже появились силиконовые высоковольтные провода. При замене старых, вышедших из строя проводов, имеет смысл приобретать именно силиконовые, так как они не «пробиваются» током высокого напряжения. А ведь перебои в работе двигателя часто происходят по причине утекания импульса тока высокого напряжения по высоковольтному проводу на «массу» автомобиля. Вместо того чтобы пробивать воздушный барьер между электродами свечи и поджигать рабочую смесь, электрический ток выбирает путь наименьшего сопротивления и «уходит на сторону».
Старайтесь не открывать капот автомобиля, когда на улице идет дождь или снег. После мокрого душа двигатель может не запуститься, так как вода, попав на приборы электрооборудования,
образует токопроводящие мостики. Тот же эффект, но более усугубленный, возникает у любителей прокатиться по глубоким лужам на большой скорости. В результате «купания», водой заливаются все приборы и провода системы зажигания, расположенные под капотом, и двигатель естественно глохнет, поскольку ток высокого напряжения уже не может добраться к свечам зажигания. Ну а возобновить поездку, теперь удается только после того, как горячий двигатель своим теплом просушит все «электрическое» в подкапотном пространстве.