Из чего состоит мотор. Общее устройство и принцип работы двигателя.

Для ознакомления с главной и неотъемлемой частью любого транспортного средства рассмотрим из чего состоит двигатель? Для полноценного восприятия его важности, двигатель всегда сравнивают с сердцем человека. Пока сердце работает - человек живет. Аналогично и двигатель, как только он останавливается, или не запускается - автомобиль со всеми его системами и механизмами превращается в груду бесполезного железа.

Он имеет два больших передних и задних спойлера для управления воздушным потоком, а двигатель находится за пилотом. Правила, определяющие автомобильные компоненты, определяются для конкретного сезона, и сами автомобили должны быть построены самими гоночными командами, хотя производство и дизайн могут быть переданы на внешний подряд.

Формула-дизайн для Формулы-1. Современные автомобили изготовлены из композитных углеродных волокон и других подобных сверхлегких материалов. Минимально допустимая масса составляет 642 килограмма, включая водителя, жидкости и бортовые камеры. Однако все автомобили имеют значительно меньший вес, чем это, добавляя балласт, чтобы привести их в норму. Преимущество балластировки заключается в том, что ее можно сделать в любой части автомобиля, что позволит вам получить идеальный баланс. Это обеспечивает более низкий центр тяжести, который улучшает стабильность, и могут быть сделаны дополнительные настройки в зависимости от отдельных схем.

За время модернизации и совершенствования автомобилей, двига­те­ли очень сильно изменились по своей конструкции в сторону компактности, экономичности, бесшумности, долговеч­нос­ти и т.д. Но принцип работы остался неизменным - на каждом автомобиле имеется двигатель внутреннего сгорания (ДВС). Исключение составляют только электродвигатели как альтернативный способ получения энергии.

Существуют также ограничения на эти двигатели, такие как запрет переменной заполнения, что приведет к более высокой скорости работы и слишком высокой мощности, достигающей слишком быстро. Однако старый двигатель должен был быть ограничен в своих оборотах, чтобы не иметь необоснованного преимущества перед 8-цилиндровыми новыми двигателями. Двигатели всасывают около 450 литров воздуха в секунду при расходе топлива 75 литров на 100 километров.

Если возникает сбой, и двигатель заменяется, тогда пилот получает штраф и опускается на 10 мест вниз по стартовой сетке. Это снижает стоимость команд, но важность тактики увеличилась, так как стратеги должны решить, в какой расе бороться с используемым и в каком новом двигателе.

Устройство двигателя автомо­би­ля представлено в разрезе на рисунке 2 .

Название «двигатель внутреннего сгорания» произошло именно от принципа получения энергии. Топливно-воздушная смесь, сгорая внутри цилиндра двигателя, выделяет огромное количество энергии и заставляет через многочисленную цепочку узлов и механизмов в конечном итоге двигаться легковой автомобиль.

Они изготовлены из углеродного титана, и их охлаждение является ключевым. Автоматическим коробкам передач и системам контроля вылета и управления тягой запрещено выдвигать навыки пилотов. Скорости изменяются с помощью рычагов за рулевым колесом, при этом электрогидравлическая система переключает шестерни и управляет работой дроссельной заслонки.

Современные муфты, используемые в Формуле 1, являются многодисковыми и изготовлены из углеродного волокна. Они имеют диаметр менее 100 мм, вес менее 1 кг. Они выдерживают более 720 лошадиных сил. Время переключения очень мало - 0, 05 секунды, и при этой нагрузке передача должна выдерживать не менее 5 гонок. При замене коробки передач раньше штраф составляет 5 мест в стартовой сетке.

Именно пары топлива в смешивании с воздухом при воспламенении дают такой эффект в ограниченном пространстве.

Для наглядности на рисунке 3 показано устройство одноцилиндрового двигателя автомобиля.

Рабочий цилиндр изнутри представ­ля­ет собой замкнутое пространство. Поршень, соединенный через шатун с коленчатым валом, является единственным подвижным элементом в цилиндре. Когда пары топлива и воздуха воспламеняются, вся высвобождаемая энергия давит на стенки цилиндра и поршень, заставляя его перемещаться вниз.

В ранних автомобилях крылья были напрямую связаны с подвеской, но несколько несчастных случаев привели к их жесткой фиксации на шасси. Аэродинамика автомобилей спроектирована таким образом, чтобы обеспечить максимальный захват на самой маленькой поверхности спойлера. Передние и задние стабилизаторы поперечной устойчивости имеют особую форму, их настройка очень тонкая и адаптируется к другим аэродинамическим элементам, таким как носовые лопасти, диффузоры, боковые баржи и многое другое.

Пилот имеет возможность тонко настраивать многие компоненты своего автомобиля с помощью кнопок и рычагов рулевого колеса. Здесь вы можете менять механизмы, регулировать топливную смесь, усилие торможения, подключаться к боксу и многое другое. Топливо, используемое в автомобилях Формулы 1.

Конструкция коленча­то­го вала выполнена таким образом, что движением поршня через шатун создается крутящий момент, заставляя проворачи­вать­ся сам вал и получать вращательную энергию. Таким образом, высвобождаемая энергия от горения рабочей смеси преобразуется в механическую энергию.

Для приготовления топливно-воздушной смеси используются два способа: внутреннее или внешнее смесеобразование. Оба способа еще отличаются по составу рабочей смеси и методов ее воспламенения.

Он похож на обычный бензин, но с гораздо более строго контролируемой смесью. Формула топлива может включать только вещества, которые используются в бензине для массового использования, и не допускают добавления спиртовых смесей, как в чемпионате США по открытому автомобилю.

Затем Мика Хаккинен исключается из своего третьего места, потому что после гонки образец топлива, взятый из автомобиля, находит его с более высоким октановым числом. Задние шины могут быть не более 380 мм и спереди 270 мм. В отличие от топлива, есть только внешнее сходство с шинами обычных автомобилей. Их износ таков, чтобы обеспечить максимальную устойчивость дороги.

Чтобы иметь четкое понятие, стоит знать, что в двигателях применяют два вида топлива: бензин и дизельное топливо. Оба вида энергоносителей получаются на основе переработки нефти. Бензин очень хорошо испаряется на воздухе.

Поэтому для двигателей, работающих на бензине, для получения топливно-воздушной смеси применяется такое устройство как карбюратор.

Существует 6 типов муфт для Формулы 1: 4 для сухой дорожки и 2 для мокрой трассы. Как правило, команды выбирают жесткую смесь и более мягкую в сухую погоду, и во время гонки они могут меняться в зависимости от хода трека, а также готовят смесь с мокрой дорожкой, особенно если это возможно дождь. Поскольку одна шина более прочная, так много сцепления и тротуара слабее и наоборот.

Слайдеры не имеют захвата, они полностью гладкие, обеспечивая 18% большую область захвата. Сегодня существует довольно существенная разница между всеми сочетаниями шин, чтобы увидеть разницу между владением автомобилем, даже самой аудиторией. Это ясно показывает стратегию пилотов, которые могут предпочесть 2 записи в боксе во время гонки или только на двух трассах, обязательно используются мягкие и сверхмягкие шины, они находятся в Гран-при Монако и Хунгароринг, поскольку оба С слишком большим количеством оборотов техника и скорость замедляются.

В карбюраторе поток воздуха смешивается с капельками бензина и подается в цилиндр. Там полученная топливно-воздушная смесь воспламеняется при подаче искры через свечу зажигания.

Дизельное топливо (ДТ) обладает малой испаряемостью при обычной температуре, но при смешивании с воздухом под огромным давлением, полученная смесь самовоспламеняется. На этом и основан принцип работы дизельных двигателей.

Тормозные тормоза Формулы 1. Дисковые тормоза состоят из ротора и челюстей на каждом колесе. Углеродные роторы, а не сталь или чугун, используются из-за сопротивления трения, высокой температуры и кручения. Они также намного легче, что является огромным преимуществом. Тормозное усилие передней и задней осей может управляться рычагом кабины, чтобы компенсировать сокращение топлива в баке и изменение режима остановки, возникающего в результате этого. Регулировка должна выполняться вручную, а не автоматически, и поэтому это не должно приводиться в движение рулевым колесом, а рычагом.

ДТ впрыскивается в цилиндр отдельно от воздуха через форсунку. Узкие сопла форсунки в сочетании с большим давлением при впрыскивании в цилиндр превращают дизельное топливо в мелкие капли, которые смешиваются с воздухом.

Для визуального представления - это аналогично тому, когда вы давите на крышку баллончика с духами или одеколоном: выдавливаемая жидкость моментально смешивается с воздухом, образуя мелкодисперсионную смесь, которая тут же распыляется, оставляя приятный аромат. Тот же самый эффект распыления происходит и в цилиндре. Поршень, двигаясь вверх, сжимает воздушное пространство, увеличивая давление, и смесь самовозгорается, заставляя поршень двигаться в обратном направлении.

Как правило, автомобиль Формулы 1 может останавливаться от 100 до 0 километров в течение примерно 15 метров, по сравнению с дорожным автомобилем высокого класса, которому необходимо около 31 метра. Требуется всего 2, 21 секунды, чтобы остановить автомобиль с 200 километров до полного отдыха и 65 метров тормозной дистанции. Это означает, что они должны иметь возможность ускоряться до 100 километров за 1 секунду, но это только в теории. Вся эта мощность не может использоваться на низкой скорости, так как происходит потеря сцепления шин с асфальтом и фактически до 100 километров за 2 секунды.

В обоих случаях качество приготовленной рабочей смеси сильно влияет на полноценную работу двигателя. Если идет недостаток в топливе или воздухе - рабочая смесь не полностью сгорает, а вырабатываемая мощность двигателя существенно уменьшается.

Как же и за счет чего подается рабочая смесь в цилиндр?

На рисунке 3 видно, что от цилиндра вверх выходят два стержня с большими шляпками. Это впускной и
выпускной клапаны, которые закрываются и открываются в определенные моменты времени, обеспечивая рабочие процессы в цилиндре. Они могут быть оба закрыты, но никогда оба не могут быть открыты. Об этом будет сказано чуть позже.

Приблизительные цифры ускорения. Данные являются примерными, потому что все зависит от аэродинамики и настроек передачи. Система, которая восстанавливает кинетическую энергию от тормозов, также может генерировать дополнительное ускорение, добавляя 80 лошадиных сил к машине, но ее можно использовать только один раз, когда это необходимо, а затем ждать новой генерации энергии.

Основная функция ремня - обеспечить точную синхронизацию между коленчатым валом и коленчатым валом. В качестве зубчатой ​​передачи зубцы выравнивающей ленты лежат на профиле зубной щетки. Вал распределителя приводит в действие клапаны, пока поршни двигателя не приводят в движение коленчатый вал с помощью маховика. Эта схема обеспечивает синхронизированный привод, при этом смещение и коленчатый вал имеют пропорциональную постоянную скорость вращения. В последнее время ленточный ремень все чаще используется для привода других компонентов, таких как водяной насос или насос-нагнетатель.

На бензиновом двигателе в цилиндре присутствует та самая свеча, которая воспламеняет топливно-воздушную смесь. Это происходит за счет возникновения искры под воздействием электрического разряда. Принцип действия и работы будет рассмотрен при изучении

Впускной клапан обеспечивает своевременное поступление рабочей смеси в цилиндр, а выпускной клапан - своевременный выпуск отработавших газов, которые больше не нужны. Клапаны работают в определенный момент времени движения поршня. Весь процесс превращения энергии от сгорания в механическую энергию называется рабочим циклом, состоящим из четырех тактов: впуск рабочей смеси, сжатие, рабочий ход и выпуск отработавших газов. Отсюда и название - четырехтактный двигатель.

Гораздо более расслабленным могут быть владельцы транспортных средств с наклонной цепью, хотя он также растягивается с течением времени. Однако этот процесс настолько медленный, что во многих случаях он согласован с жизнью самого автомобиля. Если ремень поврежден, что обычно отвечает за работу генератора переменного тока, сервопривода и кондиционера, для двигателя не будет никаких последствий, но он перестанет работать на рулевом колесе, что затруднит маневрирование автомобиля. Все это приведет к одному - невозможности нормальной работы или какой-либо операции транспортного средства.

Рассмотрим, как это происходит по рисунку 4 .

Поршень в цилиндре совершает только возвратно-поступательные движе­ни­я, то есть вверх-вниз. Это называется ходом поршня. Крайние точки, между которыми двигается поршень, называ­ют­ся мертвыми точками: верхняя (ВМТ) и нижняя (НМТ). Название «мертвая» идет от того, что в определенный момент, поршень, меняя направление на 180 градусов, как бы «застывает» в нижнем или верхнем положении на тысячные доли секунды.

Регулярный осмотр этого чрезвычайно важного элемента для здоровья двигателя является обязательным. Нет производителя, который не устанавливает интервалы замены, но рекомендуется только. Поэтому мы рекомендуем вам проверить состояние ремня в нашей мастерской и в конечном итоге заменить его раньше, чем рецепты. Обязательным для покупателей старых автомобилей является проверка сервисной книжки и, в случае сомнений относительно ее надежности, сам ремень.

Мне едва удается запустить машину - это стартер для перемен?

При работе на земле, а иногда и в движении внезапно появляется серо-белый дым и ощущается слабый запах нафты. Когда автомобиль прогревается, эта проблема исчезает. Откуда может возникнуть проблема? Жесткое зажигание автомобиля - стартер не вращается, хотя генератор генерирует достаточный крутящий момент для вращения. И когда вы включаете ключ, ток исчезает где-то. Является ли проблема в электрической системе или мой стартер поврежден или это замена?

ВМТ находится на определенном расстоянии до верхней границы цилиндра. Эта область в цилиндре называется камерой сгорания. Область с ходом поршня носит название рабочего объема цилиндра. Это понятие вы, наверняка, слышали при перечислении характе­рис­тик любого двигателя автомобиля. Ну а сумма рабочего объема и камеры сгорания образует полный объем цилиндра.

Проблема с токами, автомобиль не срабатывает - мы меняем стартер?

Сначала проверьте статус. Насос работает, свечи и масло меняются. В чем проблема и как мы ее решаем? Наиболее логичным ответом является неисправность стартера - проблема возникает, когда вы включаете.

Проблема воспламенения - проблема с стартером

Почти каждый водитель автомобиля столкнулся с проблемой вспышки. Что может быть источником проблемы, если автомобиль начинает гореть, а затем, когда все закончится, когда слишком много попыток снова встряхнуть его? Проблема также стоит перед лицом горящего бензина и да.

Соотношение полного объема цилиндра к объему камеры сгорания называется степенью сжатия рабочей смеси. Это
довольно важный показатель для любого двигателя автомобиля. Насколько сильно сжата смесь, настолько больше получается отдача при сгорании, которая преобразуется в механическую энергию.

С другой стороны, чрезмерное сжатие топливно-воздушной смеси приводит к ее взрыву, а не горению. Это явление носит название «детонация». Она ведет к потере мощности и разрушению или чрезмерному износу всего двигателя.

Проблема с освещением приборной панели. Мигают огни в течение нескольких минут и снова гаснут. Вы включаете фары и внутри темноты? Через некоторое время приборная панель загорается и гаснет или светится, иногда, кроме приборной панели, и электрические окна отказываются.

Проблемы с воспламенением: стартер, генератор переменного тока, аккумулятор, проводка

Дорогие друзья, мы открыли вам новый магазин в городе Враца. Мы также предлагаем запчасти для стартеров и генераторов, а также сервис. Автомобиль иногда не светится, не светится, не работает радиоприемник, генератор или аккумулятор?

Проблема воспламенения: стартер или замена ламп

Замена свечей зажигания автомобиля.

Для избегания современное топливное производство выпускает бензин, устойчивый к высокой степени сжатия. Каждый видел на АЗС надписи вроде АИ-92 или АИ-95. Цифра обозначает октановое число. Чем больше ее значение, тем больше устойчивость топлива к детонации, соответственно его можно применять с большей степенью сжатия.

Вы можете задать интересующие вас вопросы по теме представленной статьи, оставив свой комментарий внизу страницы.

Стартер и аккумулятор: что нам нужно знать о включении автомобиля?

Замена свечей зажигания - еще один из тех ремонтов «сделай сам». Для старых автомобилей процедура проста, и почти каждый водитель может справиться с этой задачей. Сегодня ситуация немного сложнее. Наиболее часто задаваемый вопрос о включении транспортного средства - это средний срок службы аккумулятора.

Какова продолжительность жизни аккумулятора? Одним из самых неприятных событий для каждого водителя является падение батареи. Сбой генератора является относительно общей проблемой. Чем больше выкачено транспортное средство, тем вероятнее, что электрическая система вызовет проблемы. Электропитание автомобиля играет ключевую роль в производительности и является правильным.

Вам ответит заместитель генерального директора автошколы «Мустанг» по учебной работе

Преподаватель высшей школы, кандидат технических наук

Кузнецов Юрий Александрович

Часть 1. ДВИГАТЕЛЬ И ЕГО МЕХАНИЗМЫ

Двигатель является источником механической энергии.

На подавляющем большинстве автомобилей применяется двигатель внутреннего сгорания.

Двигатель внутреннего сгорания — это устройство, в котором химическая энергия топлива превращается в полезную механическую работу.

Автомобильные двигатели внутреннего сгорания классифицируются:

По роду применяемого топлива:

Легкие жидкие (газ, бензин),

Тяжелые жидкие (дизельное топливо).

Бензиновые двигатели

Бензиновые карбюраторные. Смесь топлива с воздухом готовится в карбюраторе или во впускном коллекторе при помощи распыляющих форсунок (механических или электрических), далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи .

Бензиновые инжекторные Смесеобразование происходит путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок ( инжектор ов). Существуют системы одноточечного и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно — рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных же системах смесеобразование осуществляется под управлением электронного блока управления (ЭБУ) впрыском, управляющим электрическими бензиновыми вентилями.

Газовые двигатели

Двигатель сжигает в качестве топлива углеводороды, находящиеся в газообразном состоянии. Чаще всего газовые двигатели работаю на пропане, но есть и другие, работающие на попутных (нефтяных), сжиженном, доменных, генераторных и других видах газообразного топлива.

Принципиальное отличие газовых двигателей от бензиновых и дизельных в более высокой степени сжатия. Применение газа позволяет избежать излишнего износа деталей, так как процессы сгорания топливовоздушной смеси происходят более правильно, благодаря исходному (газообразному) состоянию топлива. Также газовые двигатели более экономичны, так как газ стоит дешевле нефти и легче добывается.

К несомненным преимуществам двигателей на газе стоит отнести безопасность и бездымность выхлопа.

Сами по себе газовые двигатели редко выпускаются серийно, чаще всего они появляются после переделки традиционных ДВС, путем оборудования их специальным газовым оборудованием.

Дизельные двигатели

Специальное дизельное топливо впрыскивается в определенный момент (не доходя до верхней мертвой точки) в цилиндр под высоким давлением через форсунку. Горючая смесь образуется непосредственно в цилиндре по мере впрыска топлива. Движение поршня внутрь цилиндра вызывает нагрев и последующее воспламенение топливовоздушной смеси. Дизельные двигатели являются низкооборотными и характеризуются высоким вращающим моментом на валу двигателя. Дополнительным преимуществом дизельного двигателя является то, что, в отличие от двигателей с принудительным зажиганием, он не нуждается в электричестве для работы (в автомобильных дизельных двигателях электрическая система используется только для запуска), и, как следствие, менее боится воды.

По способу воспламенения:

От искры (бензиновые),

От сжатия (дизельные).

По числу и расположению цилиндров:

Рядные,

Оппозитные,

V - образные,

VR - образные,

W - образные.

Рядный двигатель



Этот двигатель известен с самого начала автомобильного двигателестроения. Цилиндры расположены в один ряд перпендикулярно коленчатому валу.

Достоинство: простота конструкции

Недостаток: при большом количестве цилиндров получается очень длинный агрегат, который невозможно расположить поперечно относительно продольной оси автомобиля.

Оппозитный двигатель



Горизонтально-оппозитные двигатели отличаются меньшей габаритной высотой, чем двигатели с рядным или V-образным расположением цилиндров, что позволяет снизить центр тяжести всего автомобиля. Легкий вес, компактность конструкции и симметричность компоновки уменьшает момент рыскания автомобиля.

V-образный двигатель



Чтобы уменьшить длину двигателей, в этом двигателе цилиндры расположены под углом от 60 до 120 градусов, при этом продольные оси цилиндров проходят через продольную ось коленчатого вала.

Достоинство: относительно короткий двигатель

Недостатки: двигатель относительно широк, имеет две раздельные головки блока, повышенная стоимость изготовления, слишком большой рабочий объем.

VR-двигатели



В поисках компромиссного решения исполнения двигателей для легковых автомобилях среднего класса пришли к созданию VR-двигателей. Шесть цилиндров под углом 150 градусов образуют относительно узкий и в целом короткий двигатель. Кроме того, такой двигатель имеет только одну головку блока.

W-двигатели



В двигателях W-семейства в одном двигателе соединены два ряда цилиндров в VR-исполнеии.

Цилиндры каждого ряда размещены под углом 150 один к другому, а сами ряды цилиндров расположены под углом 720.

Стандартный автомобильный двигатель состоит из двух механизмов и пяти систем.

Механизмы двигателя

Кривошипно-шатунный механизм,

Газораспределительный механизм.

Системы двигателя

Система охлаждения,

Система смазки,

Система питания,

Система зажигания,

Система выпуска отработавших газов.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня в цилиндре во вращательное движение коленчатого вала двигателя.

Кривошипно-шатунный механизм состоит:

Блока цилиндров с картером,

Головки блока цилиндров,

Поддона картера двигателя,

Поршней с кольцами и пальцами,

Шатунов,

Коленчатого вала,

Маховика.

Блок цилиндров



Является цельнолитой деталью, объединяющей собой цилиндры двигателя. На блоке цилиндров имеются опорные поверхности для установки коленчатого вала, к верхней части блока, как правило, крепится головка блока цилиндров, нижняя часть является частью картера. Таким образом, блок цилиндров является основой двигателя, на которую навешиваются остальные детали.

Отливается как правило — из чугуна, реже — алюминия.

Блоки, изготовленные из этих материалов, отнюдь не равноценны по своим свойствам.

Так, чугунный блок наиболее жёсткий, а значит — при прочих равных выдерживает наиболее высокую степень форсировки и наименее чувствителен к перегреву. Теплоёмкость чугуна примерно вдвое ниже, чем алюминия, а значит двигатель с чугунным блоком быстрее прогревается до рабочей температуры. Однако, чугун весьма тяжёл (в 2,7 раза тяжелее алюминия), склонен к коррозии, а его теплопроводность примерно в 4 раза ниже, чем у алюминия, поэтому у двигателя с чугунным картером система охлаждения работает в более напряжённом режиме.

Алюминиевые блоки цилиндров лёгкие и лучше охлаждаются, однако в этом случае возникает проблема с материалом, из которого выполнены непосредственно стенки цилиндров. Если поршни двигателя с таким блоком сделать из чугуна или стали, то они очень быстро износят алюминиевые стенки цилиндров. Если же сделать поршни из мягкого алюминия, то они просто «схватятся» со стенками, и двигатель мгновенно заклинит.

Цилиндры в блоке цилиндров могут являться как частью отливки блока цилиндров, так и быть отдельными сменными втулками, которые могут быть «мокрыми» или «сухими». Помимо образующей части двигателя, блок цилиндров несет дополнительные функции, такие как основа системы смазки — по отверстиям в блоке цилиндров масло под давлением подается к местам смазки, а в двигателях жидкостного охлаждения основа системы охлаждения — по аналогичным отверстиям жидкость циркулирует по блоку цилиндров.

Стенки внутренней полости цилиндра служат также направляющими для поршня при его перемещениях между крайними поло-жениями. Поэтому длина образующих цилиндра предопределяется величиной хода поршня.

Цилиндр работает в условиях переменных давлений в надпорш-невой полости. Внутренние стенки его соприкасаются с пламенем и горячими газами, раскаленными до температуры 1500—2500°С. К тому же средняя скорость скольжения поршневого комплекта по стенкам цилиндра в автомобильных двигателях достигает 12— 15 м/сек при недостаточной смазке. Поэтому материал, употребляемый для изготовления цилиндров, должен обладать большой механической прочностью, а сама конструкция стенок повышенной жесткостью. Стенки цилиндров должны хорошо противостоять истиранию при ограниченной смазке и обладать общей высокой стойкостью против других возможных видов износа

В соответствии с этими требованиями в качестве основного материала для цилиндров применяют перлитный серый чугун с не-большими добавками легирующих элементов (никель, хром и др.). Применяют также высоколегированный чугун, сталь, магниевые и алюминие-вые сплавы.

Головка блока цилиндров



Является второй по значимости и по величине составной частью двигателя. В головке расположены камеры сгорания, клапаны и свечи цилиндров, в ней же на подшипниках вращается распределительный вал с кулачками. Так же, как и в блоке цилиндров, в его головке имеются водяные и масляные каналы и полости. Головка крепится к блоку цилиндров и, при работе двигателя, составляет с блоком единое целое.

Поддон картера двигателя



Закрывает снизу картер двигателя (отливается как единое целое с блоком цилиндров) и используется как резервуар для масла и защищает детали двигателя от загрязнения. В нижней части поддона имеется пробка для слива моторного масла. Поддон крепится к картеру болтами. Для предотвращения утечки масла между ними устанавливается прокладка.

Поршень


Поршень — деталь цилиндрической формы, совершающая возвратно поступательное движение внутри цилиндра и служащая для превращения изменения давления газа, пара или жидкости в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления.

Поршень подразделяется на три части, выполняющие различные функции:

Днище,

Уплотняющая часть,

Направляющая часть (юбка).

Форма днища зависит от выполняемой поршнем функции. К примеру, в двигателях внутреннего сгорания форма зависит от расположения свечей, форсунок, клапанов, конструкции двигателя и других факторов. При вогнутой форме днища образуется наиболее рациональная камера сгорания, но в ней более интенсивно происходит отложение нагара. При выпуклой форме днища увеличивается прочность поршня, но ухудшается форма камеры сгорания.

Днище и уплотняющая часть образуют головку поршня. В уплотняющей части поршня располагаются компрессионные и маслосъёмные кольца.

Расстояние от днища поршня до канавки первого компрессионного кольца называют огневым поясом поршня. В зависимости от материала, из которого сделан поршень, огневой пояс имеет минимально допустимую высоту, уменьшение которой может привести к прогару поршня вдоль наружной стенки, а также разрушению посадочного места верхнего компрессионного кольца.

Функции уплотнения, выполняемые поршневой группой, имеют большое значение для нормальной работы поршневых двигателей. О техническом состоянии двигателя судят по уплотняющей способности поршневой группы. Например, в автомобильных двигателях не допускается, чтобы расход масла из-за угара его вследствие избыточного проникновения (подсоса) в камеру сгорания превышал 3% от расхода топлива.

Юбка поршня (тронк) является его направляющей частью при движении в цилиндре и имеет два прилива (бобышки) для установки поршневого пальца. Для снижения температурных напряжений поршня с двух сторон, где расположены бобышки, с поверхности юбки, удаляют металл на глубину 0,5-1,5 мм. Эти углубления, улучшающие смазывание поршня в цилиндре и препятствующие образованию задиров от температурных деформаций, называются «холодильниками». В нижней части юбки также может располагаться маслосъемное кольцо.





Для изготовления поршней применяются серые чугуны и алюминиевые сплавы.

Чугун

Достоинства: Поршни из чугуна прочны и износостойки.

Благодаря небольшому коэффициенту линейного расширения они могут работать с относительно малыми зазорами, обеспечивая хорошее уплотнение цилиндра.

Недостатки: Чугун имеет довольно большой удельный вес. В связи с этим область применения чугунных поршней ограничивается сравнительно тихоходными двигателями, в которых силы инерции возвратно движущихся масс не превосходят одной шестой от силы давления газов на днище поршня.

Чугун имеет низкую теплопроводность, поэтому нагрев днища у чугунных поршней достигает 350—400 °C. Такой нагрев нежелателен особенно в карбюраторных двигателях, так как он служит причиной возникновения калильного зажигания.

Алюминий

Подавляющее большинство современных автомобильных двигателей имеют алюминиевые поршни.

Достоинства:

Малая масса (как минимум на 30 % меньше по сравнению с чугунными);

Высокая теплопроводность (в 3-4 раза выше теплопроводности чугуна), обеспечивающая нагрев днища поршня не более 250 °C, что способствует лучшему наполнению цилиндров и позволяет повысить степень сжатия в бензиновых двигателях;

Хорошие антифрикционные свойства.

Шатун



Шатун — деталь, соединяющая поршень (посредством поршневого пальца ) и шатунную шейку коленчатого вала . Служит для передачи возвратно-поступательных движений от поршня на коленчатый вал. Для меньшего износа шатунных шеек коленчатого вала между ними и шатунами помещают специальные вкладыши, которые имеют антифрикционное покрытие .

Коленчатый вал



Коленчатый вал — детальсложной формы, имеющая шейки для крепления шатунов , от которых воспринимает усилия и преобразует их в крутящий момент .

Коленчатые валы изготовляют из углеродистых, хромомарганцевых, хромоникельмолибденовых, и других сталей, а также из специальных высокопрочных чугунов.

Основные элементы коленчатого вала

Коренная шейка — опора вала, лежащая в коренном подшипнике , размещённом в картере двигателя.

Шатунная шейка — опора, при помощи которой вал связывается с шатунами (для смазки шатунных подшипников имеются масляные каналы).

Щёки — связывают коренные и шатунные шейки.

Передняя выходная часть вала (носок) — часть вала, на которой крепится зубчатое колесо или шкив отбора мощности для привода газораспределительного механизма (ГРМ) и различных вспомогательных узлов, систем и агрегатов.

Задняя выходная часть вала (хвостовик) — часть вала, соединяющаяся с маховиком или массивной шестернёй отбора основной части мощности.

Противовесы — обеспечивают разгрузку коренных подшипников от центробежных сил инерции первого порядка неуравновешенных масс кривошипа и нижней части шатуна.

Маховик



Массивный диск с зубчатым венцом. Зубчатый венец необходим для запуска двигателя (шестерня стартера входит в зацепление с шестерней маховика и раскручивает вал двигателя). Также маховик служит для уменьшения неравномерности вращения коленчатого вала.

Газораспределительный механизм

Предназначен для своевременного впуска в цилиндры горючей смеси и выпуска отработавших газов.

Основными деталями газораспределительного механизма являются:

Распределительный вал,

Впускные и выпускные клапана.

Распределительный вал



По расположению распределительного вала выделяют двигатели:

С распредвалом, расположенным в блоке цилиндров (Cam-in-Block);

С распредвалом, расположенным в головке блока цилиндров (Cam-in-Head).

В современных автомобильных двигателях, как правило, расположен в верхней части головки блока цилиндров и соединён со шкивом или зубчатой звёздочкой коленвала ремнём или цепью ГРМ соответственно и вращается с вдвое меньшей частотой, чем последний (на 4-тактных двигателях).



Составной частью распредвала являются его кулачки , количество которых соответствует количеству впускных и выпускных клапанов двигателя. Таким образом, каждому клапану соответствует индивидуальный кулачок, который и открывает клапан, набегая на рычаг толкателя клапана. Когда кулачок «сбегает» с рычага, клапан закрывается под действием мощной возвратной пружины.

Двигатели с рядной конфигурацией цилиндров и одной парой клапанов на цилиндр обычно имеют один распределительный вал (в случае четырёх клапанов на каждый цилиндр, два), а V-образные и оппозитные — либо один в развале блока, либо два, по одному на каждый полублок (в каждой головке блока). Двигатели, имеющие 3 клапана на цилиндр (чаще всего два впускных и один выпускной), обычно имеют один распредвал на головку блока, а имеющие 4 клапана на цилиндр (два впускных и 2 выпускных) имеют 2 распредвала в каждой головке блока.

Современные двигатели иногда имеют системы регулировки фаз газораспределения, то есть механизмы, которые позволяют проворачивать распредвал относительно приводной звездочки, тем самым изменяя момент открытия и закрытия (фазу) клапанов, что позволяет более эффективно наполнять рабочей смесью цилиндры на разных оборотах.

Клапана



Клапан состоит из плоской головки и стержня, соединенных между собой плавным переходом. Для лучшего наполнения цилиндров горючей смесью диаметр головки впускного клапаны делают значительно больше, чем диаметр выпускного. Так как клапаны работают в условиях высоких температур, их изготавливают из высококачественных сталей. Впускные клапаны делают из хромистой стали, выпускные из жаростойкой, так как последние соприкасаются с горючими отработавшими газами и нагреваются до 600 - 800 0 С. Высокая температура нагрева клапанов вызывает необходимость установки в головке цилиндров специальных вставок из жаростойкого чугуна, которые называются седлами.

Принцип работы двигателя

Основные понятия

Верхняя мертвая точка - крайнее верхнее положение поршня в цилиндре.

Нижняя мертвая точка - крайнее нижнее положение поршня в цилиндре.

Ход поршня - расстояние, которое поршень проходит от одной мертвой точки до другой.

Камера сгорания - пространствомежду головкой блока цилиндров и поршнем при его нахождении в верхней мертвой точке.

Рабочий объем цилиндра - пространство, освобождаемое поршнем при его перемещении из верхней мертвой точки в нижнюю мертвую точку.

Рабочий объем двигателя - сумма рабочих объемов всех цилиндров двигателя. Выражается в литрах, поэтому часто называется литражом двигателя.

Полный объем цилиндра - сумма объема камеры сгорания и рабочего объема цилиндра.

Степень сжатия - показывает во сколько раз полный объем цилиндра больше объема камеры сгорания.

Компрессия -давление в цилиндре в конце такта сжатия.

Такт - процесс (часть рабочего цикла), который происходит в цилиндре за один ход поршня.

Рабочий цикл двигателя

1-ый такт - впуск . При движении поршня вниз в цилиндре образуется разрежение, под действием которого через открытый впускной клапан в цилиндр поступает горючая смесь (смесь топлива с воздухом).

2-ой такт - сжатие . Поршень под действием коленчатого вала и шатуна перемещается вверх. Оба клапана закрыты и горючая смесь сжимается.

3-ий такт - рабочий ход . В конце такта сжатия горючая смесь воспламеняется (от сжатия в дизельном двигателе, от искры свечи в бензиновом двигателе). Под давлением расширяющихся газов поршень перемещается вниз и через шатун приводит во вращение коленчатый вал.

4-ый такт - выпуск . Поршень перемещается вверх, и через открывшийся выпускной клапан выходят наружу отработавшие газы.